Hepatic steatosis affects 20% to 30% of the general adult population in the western world. Currently, the technique of choice for determining hepatic fat deposition and the stage of fibrosis is liver biopsy. However, ...Hepatic steatosis affects 20% to 30% of the general adult population in the western world. Currently, the technique of choice for determining hepatic fat deposition and the stage of fibrosis is liver biopsy. However, it is an invasive procedure and its use is limited, particularly in children. It may also be subject to sampling error. Non-invasive techniques such as ultrasound, computerised tomography (CT), magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (1H MRS) can detect hepatic steatosis, but currently cannot distinguish between simple steatosis and steatohepatitis, or stage the degree of fibrosis accurately. Ultrasound is widely used to detect hepatic steatosis, but its sensitivity is reduced in the morbidly obese and also in those with small amounts of fatty infiltration. It has been used to grade hepatic fat content, but this is subjective. CT can detect hepatic steatosis, but exposes subjects to ionising radiation, thus limiting its use in longitudinal studies and in children. Recently, magnetic resonance (MR) techniques using chemical shift imaging have provided a quantitative assessment of the degree of hepatic fatty infiltration, which correlates well with liver biopsy results in the same patients. Similarly, in vivo 1H MRS is a fast, safe, non-invasive method forthe quantification of intrahepatocellular lipid (IHCL) levels. Both techniques will be useful tools in future longitudinal clinical studies, either in examining the natural history of conditions causing hepatic steatosis (e.g. non-alcoholic fatty liver disease), or in testing new treatments for these conditions.展开更多
AIM: To assess the effectiveness of the current UK clinical practice in reducing hepatic fat (IHCL).METHODS: Whole body MRI and IH MRS were obtained, before and after 6 mo nutritional counselling, from liver, sole...AIM: To assess the effectiveness of the current UK clinical practice in reducing hepatic fat (IHCL).METHODS: Whole body MRI and IH MRS were obtained, before and after 6 mo nutritional counselling, from liver, soleus and tibialis muscles in 10 subjects with non-alcoholic fatty liver disease (NAFLD).RESULTS: A 500 Kcal-restricted diet resulted in an average weight loss of 4% (-3.4 kg,) accompanied by significant reductions in most adipose tissue (AT) depots, including subcutaneous (-9.9%), abdominal subcutaneous (-10.2%) and intra-abdominal- AT (-11.4%). Intramyocellular lipids (IMCL) were significantly reduced in the tibialis muscle (-28.2%). Decreases in both IHCL (-39.9%) and soleus IMCL (-12.2%) content were also observed, although these were not significant. Several individuals showed dramatic decreases in IHCL, while others paradoxically showed increases in IHCL content. Changes in body composition were accompanied by improvements in certain liver function tests: serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Significant correlations were found between decreases in IHCL and reductions in both intra-abdominal and abdominal subcutaneous AT. Improvements in liver function tests were associated with reductions in intra-abdominal AT, but not with changes in IHCL. CONCLUSION: This study shows that even a very modest reduction in body weight achieved through lifestyle modification can result in changes in body fat depots and improvements in LETs.展开更多
基金Grants from the Novo Nordisk UK Research Foundation (supporting S.R.M)Pfizer Global Research and Development (Sandwich, UK)the British Medical Research Council and the United Kingdom Department of Health Research and Development Initiative
文摘Hepatic steatosis affects 20% to 30% of the general adult population in the western world. Currently, the technique of choice for determining hepatic fat deposition and the stage of fibrosis is liver biopsy. However, it is an invasive procedure and its use is limited, particularly in children. It may also be subject to sampling error. Non-invasive techniques such as ultrasound, computerised tomography (CT), magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (1H MRS) can detect hepatic steatosis, but currently cannot distinguish between simple steatosis and steatohepatitis, or stage the degree of fibrosis accurately. Ultrasound is widely used to detect hepatic steatosis, but its sensitivity is reduced in the morbidly obese and also in those with small amounts of fatty infiltration. It has been used to grade hepatic fat content, but this is subjective. CT can detect hepatic steatosis, but exposes subjects to ionising radiation, thus limiting its use in longitudinal studies and in children. Recently, magnetic resonance (MR) techniques using chemical shift imaging have provided a quantitative assessment of the degree of hepatic fatty infiltration, which correlates well with liver biopsy results in the same patients. Similarly, in vivo 1H MRS is a fast, safe, non-invasive method forthe quantification of intrahepatocellular lipid (IHCL) levels. Both techniques will be useful tools in future longitudinal clinical studies, either in examining the natural history of conditions causing hepatic steatosis (e.g. non-alcoholic fatty liver disease), or in testing new treatments for these conditions.
基金Supported by the British Medical Research Council, United Kingdom, No. MRC CEG G99000178
文摘AIM: To assess the effectiveness of the current UK clinical practice in reducing hepatic fat (IHCL).METHODS: Whole body MRI and IH MRS were obtained, before and after 6 mo nutritional counselling, from liver, soleus and tibialis muscles in 10 subjects with non-alcoholic fatty liver disease (NAFLD).RESULTS: A 500 Kcal-restricted diet resulted in an average weight loss of 4% (-3.4 kg,) accompanied by significant reductions in most adipose tissue (AT) depots, including subcutaneous (-9.9%), abdominal subcutaneous (-10.2%) and intra-abdominal- AT (-11.4%). Intramyocellular lipids (IMCL) were significantly reduced in the tibialis muscle (-28.2%). Decreases in both IHCL (-39.9%) and soleus IMCL (-12.2%) content were also observed, although these were not significant. Several individuals showed dramatic decreases in IHCL, while others paradoxically showed increases in IHCL content. Changes in body composition were accompanied by improvements in certain liver function tests: serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Significant correlations were found between decreases in IHCL and reductions in both intra-abdominal and abdominal subcutaneous AT. Improvements in liver function tests were associated with reductions in intra-abdominal AT, but not with changes in IHCL. CONCLUSION: This study shows that even a very modest reduction in body weight achieved through lifestyle modification can result in changes in body fat depots and improvements in LETs.