期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Electrical Relaxation in Mixed Alkali Bi_2O_3-K_2O-Li_2O-Fe_2O_3 Glasses 被引量:1
1
作者 e.e.shaisha Sh.F.El-Desouki +1 位作者 I.Shaltout A.A.Bahgat 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第5期701-707,共7页
A new glass system (Bi2O3)50(Fe2O3)10(Li2O)x(K2O)40-x, where x changes in steps of 5 mole fraction between 0 and 40, was selected to study the electrical relaxation and the mixed alkali effect (MAE) phenomen... A new glass system (Bi2O3)50(Fe2O3)10(Li2O)x(K2O)40-x, where x changes in steps of 5 mole fraction between 0 and 40, was selected to study the electrical relaxation and the mixed alkali effect (MAE) phenomena. Measurements of ac conductivity σac, dielectric permittivity ε′ and loss factor tanδ in the frequency range of 0.12~10^2 kHz and in the temperature range of 300~650 K were carried out. The temperature dependence of the ac conductivity shows a slow increasing rate at low temperature and high frequency and a rapid increase at high temperature and low frequency. At constant temperature, the ac conductivity is found to be proportional to ω^8, where s is the frequency exponent, which is less than 1. Analysis of the conductivity data and the frequency exponent shows that the overlapping large polaron tunnelling (OLPT) model of ions is the most favorable mechanism for the ac conduction in the present glass system. The ac response, the dc conductivity and dielectric relaxation have the same activation energy and they originate from the same basic transport mechanism. The results of the dielectric permittivity show no maximum peak in the temperature and frequency range studied. This absence of maximum peak is an indication of non-ferroelectric behavior of all the studied samples. The MAE has been detected in the ac conductivity, which is the same as the classical MAE in the dc conductivity. The electrical parameters such as dielectric permittivity ε′ and real dielectric modulus M′ show a typical minimum deviation from linearity by about two orders of magnitude. The loss factor tanδ and the imaginary dielectric modulus M″ are insignificantly dependent on composition even at the same transition temperature Tg. 展开更多
关键词 Dielectric permittivity Dielectric modulus Loss factor Conduction mechanism MAE (mixed alkali effect)
下载PDF
Enhancement of Electric Conductivity in Transparent Glasse—Ceramic Nanocomposites of Bi_2O_3—BaTiO_3 Glasses 被引量:3
2
作者 A.A.Bahgat M.G.Moustafa e.e.shaisha 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第12期1166-1176,共11页
The frequency and temperature dependent electrical conductivity measurements for heat-treated binary glass system with composition of (lO0-x)Bi203-xBaTi03 (x = 20, 30, 40 and 50, in mol%) were carried out. The gla... The frequency and temperature dependent electrical conductivity measurements for heat-treated binary glass system with composition of (lO0-x)Bi203-xBaTi03 (x = 20, 30, 40 and 50, in mol%) were carried out. The glass was prepared by melt quenching technique and their corresponding glass-ceramic nanocomposites were obtained by suitable heat treatment. Nanostructured behavior and electrical properties of these glasses and their corresponding glass-ceramic nanocomposites were studied. X-ray diffraction (XRD) and differential scanning calorimetry confirmed the amorphous nature of the glasses. Moreover, XRD patterns of the samples indicate nanocrystallites embedded in the glass matrix. The Fourier transform infrared spectroscopy (FT-IR) spectral analysis showed that the band positions of glass system are within the wave number range of Bi06, Bi03 and Ti06 structural units. It is observed that the electrical conductivity is enhanced by 102-103 times in the transparent glass-ceramic nanocomposite phase. With further heat treatment, the conductivity decreased considerably in the stage of glass-ceramic nanocomposite phase as compared with the glassy phase sample. Therefore, partially devitrified phase is more suitable as cathode material in secondary batteries compared to its vitreous or fully crystalline counterpart. The conduction mechanism was confirmed to obey the adiabatic small polaron hopping (SPH). AC conductivity measurements were performed as a function of temperature and frequency, showing a very slow increasing rate at low temperatures and then a fast rate at higher temperatures. 展开更多
关键词 Barium titanat Transparent glass--ceramic nanocomposites DC electrical conductivity AC electrical conductivity Smallpolaron hopping
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部