A sol-gel method was used to prepare TiO_2 and sulfur-TiO_2(S-TiO_2) nanocomposites, which were characterized by N_2 adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescene, ultrav...A sol-gel method was used to prepare TiO_2 and sulfur-TiO_2(S-TiO_2) nanocomposites, which were characterized by N_2 adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescene, ultraviolet visible and transmission electron microscopy measurements. The photocatalytic performance of TiO_2 and S-TiO_2 nanocomposites, with respect to the photocatalytic oxidation of cyanide under visible light irradiation, was determined. The results reveal that S is well dispersed on the surface of TiO_2 nanoparticles. Additionally, the surface area of the S-TiO_2 nanocomposites was observed to be smaller than that of the TiO_2 nanoparticles because of blocked pores caused by doping with S. The S-TiO_2 nanocomposite(0.3 wt% S) exhibited the lowest band gap and the highest photocatalytic activity in the oxidation of cyanide. The photocatalytic performance of S-TiO_2(0.3 wt% S) nanocomposites was stable, even after the fifth reuse of the nanoparticles for the oxidation of cyanide.展开更多
Ga2O3‐SiO2 nanoparticles were prepared by a sol‐gel method and Pt was then immobilized on their surface via photo‐assisted deposition (PAD). The produced samples were characterized using X‐ray diffraction (XRD), u...Ga2O3‐SiO2 nanoparticles were prepared by a sol‐gel method and Pt was then immobilized on their surface via photo‐assisted deposition (PAD). The produced samples were characterized using X‐ray diffraction (XRD), ultraviolet and visible spectroscopy, photoluminescence emission spectroscopy, and surface area measurements. The catalytic performances of the Ga2O3‐SiO2 and Pt/ Ga2O3‐SiO2 samples were evaluated for the degradation of cyanide using visible light. XRD and EDX results showed that the Pt was well dispersed within the Ga2O3‐SiO2 phase and was detected on the surface of the catalyst, which confirmed the successful loading of Pt ions by the PAD method. BET results revealed that the surface area of Ga2O3‐SiO2 was higher than that of Pt/Ga2O3‐SiO2 . 0.3 wt% Pt/Ga2O3‐SiO2 exhibited the highest photocatalytic activity for degradation of cyanide under visible light. The catalyst could be reused with no loss in activity for the first 10 cycles.展开更多
文摘A sol-gel method was used to prepare TiO_2 and sulfur-TiO_2(S-TiO_2) nanocomposites, which were characterized by N_2 adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescene, ultraviolet visible and transmission electron microscopy measurements. The photocatalytic performance of TiO_2 and S-TiO_2 nanocomposites, with respect to the photocatalytic oxidation of cyanide under visible light irradiation, was determined. The results reveal that S is well dispersed on the surface of TiO_2 nanoparticles. Additionally, the surface area of the S-TiO_2 nanocomposites was observed to be smaller than that of the TiO_2 nanoparticles because of blocked pores caused by doping with S. The S-TiO_2 nanocomposite(0.3 wt% S) exhibited the lowest band gap and the highest photocatalytic activity in the oxidation of cyanide. The photocatalytic performance of S-TiO_2(0.3 wt% S) nanocomposites was stable, even after the fifth reuse of the nanoparticles for the oxidation of cyanide.
基金funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant number (247‐002‐D1433)
文摘Ga2O3‐SiO2 nanoparticles were prepared by a sol‐gel method and Pt was then immobilized on their surface via photo‐assisted deposition (PAD). The produced samples were characterized using X‐ray diffraction (XRD), ultraviolet and visible spectroscopy, photoluminescence emission spectroscopy, and surface area measurements. The catalytic performances of the Ga2O3‐SiO2 and Pt/ Ga2O3‐SiO2 samples were evaluated for the degradation of cyanide using visible light. XRD and EDX results showed that the Pt was well dispersed within the Ga2O3‐SiO2 phase and was detected on the surface of the catalyst, which confirmed the successful loading of Pt ions by the PAD method. BET results revealed that the surface area of Ga2O3‐SiO2 was higher than that of Pt/Ga2O3‐SiO2 . 0.3 wt% Pt/Ga2O3‐SiO2 exhibited the highest photocatalytic activity for degradation of cyanide under visible light. The catalyst could be reused with no loss in activity for the first 10 cycles.