The application of tribological knowledge is not just restricted to optimizing mechanical and chemical engineering problems.In fact,effective solutions to friction and wear related questions can be found in our everyd...The application of tribological knowledge is not just restricted to optimizing mechanical and chemical engineering problems.In fact,effective solutions to friction and wear related questions can be found in our everyday life.An important part is related to skin tribology,as the human skin is frequently one of the interacting surfaces in relative motion.People seem to solve these problems related to skin friction based upon a trial-and-error strategy and based upon on our sense for touch.The question of course rises whether or not a trained tribologist would make different choices based upon a science based strategy?In other words:Is skin friction part of the larger knowledge base that has been generated during the last decades by tribology research groups and which could be referred to as Science Friction?This paper discusses the specific nature of tribological systems that include the human skin and argues that the living nature of skin limits the use of conventional methods.Skin tribology requires in vivo,subject and anatomical location specific test methods.Current predictive friction models can only partially be applied to predict in vivo skin friction.The reason for this is found in limited understanding of the contact mechanics at the asperity level of product-skin interactions.A recently developed model gives the building blocks for enhanced understanding of friction at the micro scale.Only largely simplified power law based equations are currently available as general engineering tools.Finally,the need for friction control is illustrated by elaborating on the role of skin friction on discomfort and comfort.Surface texturing and polymer brush coatings are promising directions as they provide way and means to tailor friction in sliding contacts without the need of major changes to the product.展开更多
Tactile perception is a complex system,which depends on frictional interactions between skin and counter-body.The contact mechanics of tactile friction is governed by many factors such as the state and properties of s...Tactile perception is a complex system,which depends on frictional interactions between skin and counter-body.The contact mechanics of tactile friction is governed by many factors such as the state and properties of skin and counter-body.In order to discover the connection between perception and tactile friction on textured stainless steel sheets,both perception experiments (subjective) and tactile friction measurements (objective) were performed in this research.The perception experiments were carried out by using a panel test method to identify the perceived roughness,perceived stickiness and comfort level from the participants.For the friction experiments,tactile friction was measured by a multi-axis force/torque transducer in vivo.The perceived stickiness was illustrated as an effective subjective stimulus,which has a negative correlation to the comfort perception.No significant evidence was revealed to the connection between the perceived roughness and comfort perception,and this relationship may be influenced by the participants' individual experience,gender and moisture level of skin.Furthermore,the kinetic tactile friction was concluded as an objective stimulus to the comfort perception with a negative correlation.展开更多
文摘The application of tribological knowledge is not just restricted to optimizing mechanical and chemical engineering problems.In fact,effective solutions to friction and wear related questions can be found in our everyday life.An important part is related to skin tribology,as the human skin is frequently one of the interacting surfaces in relative motion.People seem to solve these problems related to skin friction based upon a trial-and-error strategy and based upon on our sense for touch.The question of course rises whether or not a trained tribologist would make different choices based upon a science based strategy?In other words:Is skin friction part of the larger knowledge base that has been generated during the last decades by tribology research groups and which could be referred to as Science Friction?This paper discusses the specific nature of tribological systems that include the human skin and argues that the living nature of skin limits the use of conventional methods.Skin tribology requires in vivo,subject and anatomical location specific test methods.Current predictive friction models can only partially be applied to predict in vivo skin friction.The reason for this is found in limited understanding of the contact mechanics at the asperity level of product-skin interactions.A recently developed model gives the building blocks for enhanced understanding of friction at the micro scale.Only largely simplified power law based equations are currently available as general engineering tools.Finally,the need for friction control is illustrated by elaborating on the role of skin friction on discomfort and comfort.Surface texturing and polymer brush coatings are promising directions as they provide way and means to tailor friction in sliding contacts without the need of major changes to the product.
文摘Tactile perception is a complex system,which depends on frictional interactions between skin and counter-body.The contact mechanics of tactile friction is governed by many factors such as the state and properties of skin and counter-body.In order to discover the connection between perception and tactile friction on textured stainless steel sheets,both perception experiments (subjective) and tactile friction measurements (objective) were performed in this research.The perception experiments were carried out by using a panel test method to identify the perceived roughness,perceived stickiness and comfort level from the participants.For the friction experiments,tactile friction was measured by a multi-axis force/torque transducer in vivo.The perceived stickiness was illustrated as an effective subjective stimulus,which has a negative correlation to the comfort perception.No significant evidence was revealed to the connection between the perceived roughness and comfort perception,and this relationship may be influenced by the participants' individual experience,gender and moisture level of skin.Furthermore,the kinetic tactile friction was concluded as an objective stimulus to the comfort perception with a negative correlation.