An analytical model of current propagation in a helical coil with varying geometry is developed.It can be used for post-acceleration and post-focusing of ions produced via laser-driven target normal sheath acceleratio...An analytical model of current propagation in a helical coil with varying geometry is developed.It can be used for post-acceleration and post-focusing of ions produced via laser-driven target normal sheath acceleration and generation of electromagnetic pulses.We calculate the current that propagates in a helical coil and suggest a method for improving its dispersion properties using a screening tube and with pitch and radius variation.The electromagnetic fields calculated with the analytical model are in agreement with particle-in-cell simulations.The model provides insights into the physics of current propagation in helical coils with varying geometries and enables a numerical implementation for rapid proton spectrum computations,which facilitate the design of such coils for future experiments.展开更多
基金supported by the CEA/DAM Laser Plasma Experiments Validation Projectthe CEA/DAM Basic Technical and Scientific Studies Project+4 种基金supported by the National Sciences and Engineering Research Council of Canada(NSERC)(Grant Nos.RGPIN-2023-05459 and ALLRP 556340-20)Compute Canada(Job pve-323-ac)the Canada Foundation for Innovation(CFI)financial support by the IdEx University of Bordeaux/Grand Research Program“GPR LIGHT”the Graduate Program on Light Sciences and Technologies of the University of Bordeaux。
文摘An analytical model of current propagation in a helical coil with varying geometry is developed.It can be used for post-acceleration and post-focusing of ions produced via laser-driven target normal sheath acceleration and generation of electromagnetic pulses.We calculate the current that propagates in a helical coil and suggest a method for improving its dispersion properties using a screening tube and with pitch and radius variation.The electromagnetic fields calculated with the analytical model are in agreement with particle-in-cell simulations.The model provides insights into the physics of current propagation in helical coils with varying geometries and enables a numerical implementation for rapid proton spectrum computations,which facilitate the design of such coils for future experiments.