Thin-film catalysts are recently recognized as promising catalysts due to their reduced amount of materials and good catalytic activity,leading to low-cost and high-efficiency catalysts.A series of CuFeO_(x)thin-film ...Thin-film catalysts are recently recognized as promising catalysts due to their reduced amount of materials and good catalytic activity,leading to low-cost and high-efficiency catalysts.A series of CuFeO_(x)thin-film catalysts were prepared with different Fe contents using a one-step method as well as tested for the catalytic reduction of nitrous oxide(N_(2)O)in the presence of CH_(4)at a high GH SV of 185000 mL/(g·h).The increase of iron strongly affects the dispersion and leads to the creation of a less-active segregated Fe_(2)O_(3)phase,which was confirmed by XRD,EDX,and XPS outcomes.The results show that the synergistic properties between Cu and Fe,which affect the CuFeOxfilm catalysts in many aspects,such as the hollow-like texture,specific surface area,nano-crystallite size,the surface contents of Cu^(+),Fe^(3+),and oxygen species,the reductive strength and the strong active sites on the surface.Using DFT calculations,the adsorption and decomposition energy profiles of N_(2)O on the CuFeO_(2)(012)surface model were explored.The surface Fe-site and hollow-site are active for N_(2)O decomposition,and the decomposition energy barriers on the Fe-site and the hollow-site are 1.02 eV and 1.25 eV respectively at 0 K.The strategy adopted here to tailor the activity through low-doping Fe-oxide catalysts could establish a promising way to improve the catalytic reduction of N_(2)O with CH_(4).展开更多
基金financially supported by the MOST(2022YFB4003900/2021YFA0716200)Beijing Municipal Natural Science Foundation(JQ20017)National Natural Science Foundation of China NSFC(No.52161145105/51976216/51888103)。
文摘Thin-film catalysts are recently recognized as promising catalysts due to their reduced amount of materials and good catalytic activity,leading to low-cost and high-efficiency catalysts.A series of CuFeO_(x)thin-film catalysts were prepared with different Fe contents using a one-step method as well as tested for the catalytic reduction of nitrous oxide(N_(2)O)in the presence of CH_(4)at a high GH SV of 185000 mL/(g·h).The increase of iron strongly affects the dispersion and leads to the creation of a less-active segregated Fe_(2)O_(3)phase,which was confirmed by XRD,EDX,and XPS outcomes.The results show that the synergistic properties between Cu and Fe,which affect the CuFeOxfilm catalysts in many aspects,such as the hollow-like texture,specific surface area,nano-crystallite size,the surface contents of Cu^(+),Fe^(3+),and oxygen species,the reductive strength and the strong active sites on the surface.Using DFT calculations,the adsorption and decomposition energy profiles of N_(2)O on the CuFeO_(2)(012)surface model were explored.The surface Fe-site and hollow-site are active for N_(2)O decomposition,and the decomposition energy barriers on the Fe-site and the hollow-site are 1.02 eV and 1.25 eV respectively at 0 K.The strategy adopted here to tailor the activity through low-doping Fe-oxide catalysts could establish a promising way to improve the catalytic reduction of N_(2)O with CH_(4).