期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
利用人工智能神经网络和DEM数据进行植被变化探测
被引量:
7
1
作者
张志明
LPCVerbeke
+2 位作者
emde clercq
欧晓昆
RRDeWulf
《科学通报》
EI
CAS
CSCD
北大核心
2007年第A02期201-210,共10页
适时精确的探测土地利用和覆盖变化是研究其起因、过程和效应的基础.本研究利用人工智能神经网络对两景不同时期的影像(2003和2004年)进行一次性变化探测.并且输入层中增加了DEM和坡度两个额外"波段".在选取训练样区的过程中...
适时精确的探测土地利用和覆盖变化是研究其起因、过程和效应的基础.本研究利用人工智能神经网络对两景不同时期的影像(2003和2004年)进行一次性变化探测.并且输入层中增加了DEM和坡度两个额外"波段".在选取训练样区的过程中,共选取了82个亚类型,其中36个为植被变化亚类型,46个为无变化植被亚类型.NDVI差值法被用于探测变化和无变化的区域,该方法为获取精确的和足够的植被变化类型训练样区提供有效的参考.研究结果显示利用人工智能神经网络探测变化技术所产生的植被变化图,其精度明显高于分类后比较法所产生的植被变化图精度.此外将DEM和坡度作为额外波段结合两景影像得的8个主成分作为输入层,能够有效的提高人工智能神经网络进行山区植被变化探测精度.同时在选取训练样区的过程中,将各不同的变化和无变化的植被类型根据其不同的光谱特征分成不同的亚类型进行取样,对提高人工智能神经网络进行山区植被变化探测精度有着非常重要的促进作用,此处理可以降低山区影像的地形效应.
展开更多
关键词
人工智能神经网络探测变化技术
DEM
植被变化
分类后比较法
NDVI差值法
原文传递
题名
利用人工智能神经网络和DEM数据进行植被变化探测
被引量:
7
1
作者
张志明
LPCVerbeke
emde clercq
欧晓昆
RRDeWulf
机构
云南大学生态学与地植物学研究所
Laboratory of Forest Management and Spatial Information
出处
《科学通报》
EI
CAS
CSCD
北大核心
2007年第A02期201-210,共10页
基金
中国国家重点基础研究发展计划项目(编号:2003CB415102)
比利时弗莱芒省大学联合会项目(Vlaamse Interuniversitaire Raad
VLIR)(编号:VLIRZEIN2002PR264-886)资助
文摘
适时精确的探测土地利用和覆盖变化是研究其起因、过程和效应的基础.本研究利用人工智能神经网络对两景不同时期的影像(2003和2004年)进行一次性变化探测.并且输入层中增加了DEM和坡度两个额外"波段".在选取训练样区的过程中,共选取了82个亚类型,其中36个为植被变化亚类型,46个为无变化植被亚类型.NDVI差值法被用于探测变化和无变化的区域,该方法为获取精确的和足够的植被变化类型训练样区提供有效的参考.研究结果显示利用人工智能神经网络探测变化技术所产生的植被变化图,其精度明显高于分类后比较法所产生的植被变化图精度.此外将DEM和坡度作为额外波段结合两景影像得的8个主成分作为输入层,能够有效的提高人工智能神经网络进行山区植被变化探测精度.同时在选取训练样区的过程中,将各不同的变化和无变化的植被类型根据其不同的光谱特征分成不同的亚类型进行取样,对提高人工智能神经网络进行山区植被变化探测精度有着非常重要的促进作用,此处理可以降低山区影像的地形效应.
关键词
人工智能神经网络探测变化技术
DEM
植被变化
分类后比较法
NDVI差值法
分类号
Q948-3 [生物学—植物学]
原文传递
题名
作者
出处
发文年
被引量
操作
1
利用人工智能神经网络和DEM数据进行植被变化探测
张志明
LPCVerbeke
emde clercq
欧晓昆
RRDeWulf
《科学通报》
EI
CAS
CSCD
北大核心
2007
7
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部