The use of low electrically conducting liquids is more and more widespread.This is the case for molten glass,salt or slag processing,ionic liquids used in biotechnology,batteries in energy storage and metallurgy.The p...The use of low electrically conducting liquids is more and more widespread.This is the case for molten glass,salt or slag processing,ionic liquids used in biotechnology,batteries in energy storage and metallurgy.The present paper deals with the design of a new electromagnetic induction device that can heat and stir low electricallyconducting liquids.It consists of a resistance-capacity-inductance circuit coupled with a low-conducting liquid load.The device is supplied by a unique electric power source delivering a single-phase high frequency electric current.The main working principle of the circuit is based on a double oscillating circuit inductor connected to the solid-state transistor generator.This technique,which yields a set of coupled oscillating circuits,consists of coupling a forced phase and an induced phase,neglecting the influence of the electric parameters of the loading part(i.e.,the low-conductivity liquid).It is shown that such an inductor is capable to provide a two-phase AC traveling magnetic field at high frequency.To better understand the working principle,the present work improves a previous existing simplified theory by taking into account a complex electrical equivalent diagram due to the different mutual couplings between the two inductors and the two corresponding induced current sets.A more detailed theoretical model is provided,and the key and sensitive elements are elaborated.Based on this theory,equipment is designed to provide a stirring effect on sodium chloride-salted water at 40 S/m.It is shown that such a device fed by several hundred kiloHertz electric currents is able to mimic a linear motor.A set of optimized operating parameters are proposed to guide the experiment.A pure electromagnetic numerical model is presented.Numerical modelling of the load is performed in order to assess the efficiency of the stirrer with a salt water load.Such a device can generate a significant liquid motion with both controlled flow patterns and adjustable amplitude.Based on the magnetohydrodynamic theory,numerical modeling of the salt water flow generated by the stirrer confirms its feasibility.展开更多
A 2-D mathematical model is developed in order to simulate a parametric electromagnetic instability oscillation process of a liquid metal droplet under the action of low frequency magnetic field. The Arbitrary Lagrang...A 2-D mathematical model is developed in order to simulate a parametric electromagnetic instability oscillation process of a liquid metal droplet under the action of low frequency magnetic field. The Arbitrary Lagrangian-Eulerian (ALE) method and weak form constraint boundary condition are introduced in this model for implementation of the surface tension and electromagnetic force on liquid droplet free surface. The results of the numerical calculations indicate the appearance of various regimes of oscillation. It is found that according to the magnetic field frequency various types of oscillation modes may be found. The oscillation is originated from an instability phenomenon. The stability diagram of liquid metal droplet in the parameter space of magnetic frequency and magnetic flux density is determined numerically. The diagram is very similar to that found in the so-called parametric instability.展开更多
The inductive cold crucible is a very interesting tool for processing materials by magnetic field without pollution.It is more and more used in various areas like in aeronautic,photovoltaic,waste recycling industries ...The inductive cold crucible is a very interesting tool for processing materials by magnetic field without pollution.It is more and more used in various areas like in aeronautic,photovoltaic,waste recycling industries and also for medical applications.As the cold cracible in its current state of art has a low energetic efficiency,the better comprehension of this process thanks to recently improved multiphysic modeling tools and experimental measurements gives some guidelines for experimenting new kinds of cold crucibles.These elements are presented in this paper, especially the numerical modeling and first tests operated on a'thin shaped cold crucible'which seems very promising concerning the efficiency improvement and also a better overheating of liquid charge.展开更多
基金This study was supported by the Instrument and Equipment Development Project of the Chinese Academy of Sciences(YJKYYQ20200053)the“Double First-Class”Construction Fund(111800XX62)the Mechanical Engineering Discipline Construction Fund(111800M000).
文摘The use of low electrically conducting liquids is more and more widespread.This is the case for molten glass,salt or slag processing,ionic liquids used in biotechnology,batteries in energy storage and metallurgy.The present paper deals with the design of a new electromagnetic induction device that can heat and stir low electricallyconducting liquids.It consists of a resistance-capacity-inductance circuit coupled with a low-conducting liquid load.The device is supplied by a unique electric power source delivering a single-phase high frequency electric current.The main working principle of the circuit is based on a double oscillating circuit inductor connected to the solid-state transistor generator.This technique,which yields a set of coupled oscillating circuits,consists of coupling a forced phase and an induced phase,neglecting the influence of the electric parameters of the loading part(i.e.,the low-conductivity liquid).It is shown that such an inductor is capable to provide a two-phase AC traveling magnetic field at high frequency.To better understand the working principle,the present work improves a previous existing simplified theory by taking into account a complex electrical equivalent diagram due to the different mutual couplings between the two inductors and the two corresponding induced current sets.A more detailed theoretical model is provided,and the key and sensitive elements are elaborated.Based on this theory,equipment is designed to provide a stirring effect on sodium chloride-salted water at 40 S/m.It is shown that such a device fed by several hundred kiloHertz electric currents is able to mimic a linear motor.A set of optimized operating parameters are proposed to guide the experiment.A pure electromagnetic numerical model is presented.Numerical modelling of the load is performed in order to assess the efficiency of the stirrer with a salt water load.Such a device can generate a significant liquid motion with both controlled flow patterns and adjustable amplitude.Based on the magnetohydrodynamic theory,numerical modeling of the salt water flow generated by the stirrer confirms its feasibility.
基金supported by the National Natural Science Foundation of China(Grant Nos.51274137,10872123)supported by the China Scholarship Council and Région Rhne-Alpes (France) for supporting Lei's visiting in Grenoble
文摘A 2-D mathematical model is developed in order to simulate a parametric electromagnetic instability oscillation process of a liquid metal droplet under the action of low frequency magnetic field. The Arbitrary Lagrangian-Eulerian (ALE) method and weak form constraint boundary condition are introduced in this model for implementation of the surface tension and electromagnetic force on liquid droplet free surface. The results of the numerical calculations indicate the appearance of various regimes of oscillation. It is found that according to the magnetic field frequency various types of oscillation modes may be found. The oscillation is originated from an instability phenomenon. The stability diagram of liquid metal droplet in the parameter space of magnetic frequency and magnetic flux density is determined numerically. The diagram is very similar to that found in the so-called parametric instability.
文摘The inductive cold crucible is a very interesting tool for processing materials by magnetic field without pollution.It is more and more used in various areas like in aeronautic,photovoltaic,waste recycling industries and also for medical applications.As the cold cracible in its current state of art has a low energetic efficiency,the better comprehension of this process thanks to recently improved multiphysic modeling tools and experimental measurements gives some guidelines for experimenting new kinds of cold crucibles.These elements are presented in this paper, especially the numerical modeling and first tests operated on a'thin shaped cold crucible'which seems very promising concerning the efficiency improvement and also a better overheating of liquid charge.