The present paper focuses on the erosive cavitation behavior around a plane convex hydrofoil. The Zwart-Gerber-Belamri cavitation model is implemented in a library form to be used with the OpenFOAM. The implicit large...The present paper focuses on the erosive cavitation behavior around a plane convex hydrofoil. The Zwart-Gerber-Belamri cavitation model is implemented in a library form to be used with the OpenFOAM. The implicit large eddy simulation (ILES) is app- lied to analyze the three-dimensional unsteady cavitating flow around a plane convex hydrofoil. The numerical results in the cases under the hydrodynamic conditions, which were experimentally tested at the high speed cavitation tunnel of the l^cole Polytechnique F6d&ale de Lausanne (EPFL), clearly show the sheet cavitation development, the shedding and the collapse of vapor clouds. It is noted that the cavitation evolutions including the maximum vapor length, the detachment and the oscillation frequency, are captured fairly well. Furthermore, the pressure pulses due to the cavitation development as well as the complex vortex structures are reasona- bly well predicted. Consequently, it may be concluded that the present numerical method can be used to investigate the unsteady cavitation around hydrofoils with a satisfactory accuracy.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51306018,51536008 and 51179091)
文摘The present paper focuses on the erosive cavitation behavior around a plane convex hydrofoil. The Zwart-Gerber-Belamri cavitation model is implemented in a library form to be used with the OpenFOAM. The implicit large eddy simulation (ILES) is app- lied to analyze the three-dimensional unsteady cavitating flow around a plane convex hydrofoil. The numerical results in the cases under the hydrodynamic conditions, which were experimentally tested at the high speed cavitation tunnel of the l^cole Polytechnique F6d&ale de Lausanne (EPFL), clearly show the sheet cavitation development, the shedding and the collapse of vapor clouds. It is noted that the cavitation evolutions including the maximum vapor length, the detachment and the oscillation frequency, are captured fairly well. Furthermore, the pressure pulses due to the cavitation development as well as the complex vortex structures are reasona- bly well predicted. Consequently, it may be concluded that the present numerical method can be used to investigate the unsteady cavitation around hydrofoils with a satisfactory accuracy.