Surface temperatures were determined with due consideration of the influencing thermal conditions of conductive, convective and radiative heat. A general condition of heat influx to a point was formulated with the end...Surface temperatures were determined with due consideration of the influencing thermal conditions of conductive, convective and radiative heat. A general condition of heat influx to a point was formulated with the end effect of such influx to the receiving point. It was noted that the heat flow will cause a rate of change of internal energy of the point. Based on the theory of the rate of change of internal energy, a combustor model of cylindrical cross-section was used to generate out the timely temperature equation. Further work was done on this model equation to convert it to non-dimensional. The conversion of this equation was very essential in summing up the parameters that can influence the timely generation of the temperatures. Interestingly, it is noted that when a material withstands temperatures, it will equally withstand the thermal stresses that inherently will be developed in it. From the results, the work came up with a table showing the range of these slope figures of equations, a point was also found for a vital recommendation for further studies, where such figures can be used to check the suitability for thermal stress levels and the lifetime of combustor of such thickness.展开更多
Thermal stresses in the combustor of gas-turbines are computed using non-dimensional parameters. Buckingham pi theorem was used to arrange the listed relevant parameters into non-dimensional groups. In testing the val...Thermal stresses in the combustor of gas-turbines are computed using non-dimensional parameters. Buckingham pi theorem was used to arrange the listed relevant parameters into non-dimensional groups. In testing the validity of the functional relation of the non-dimensional independent parameters, use is made of the prevailing temperatures of the combustor in operation. A computer program was used to enhance computations. The results showed an interesting way of influencing the axial stresses. To reduce stresses in gas-turbine combustors, a method of varying the independent parameter that is of radius ratio oriented and thickness dependent was adopted. This showed a reduction of the axial stresses to minimal levels using the parameters. Plots were made and a point of inflection that manifested itself in the presentation of the axial stress function was further investigated upon. It turned out to be a point of abnormal stress level and out-of-trend temperature profile. The use of non-dimensional consideration proved adequate in the computation of axial stresses. The results showed a 2 percent difference from existing values of stresses got from a transient thermal loading of a combustor.展开更多
文摘Surface temperatures were determined with due consideration of the influencing thermal conditions of conductive, convective and radiative heat. A general condition of heat influx to a point was formulated with the end effect of such influx to the receiving point. It was noted that the heat flow will cause a rate of change of internal energy of the point. Based on the theory of the rate of change of internal energy, a combustor model of cylindrical cross-section was used to generate out the timely temperature equation. Further work was done on this model equation to convert it to non-dimensional. The conversion of this equation was very essential in summing up the parameters that can influence the timely generation of the temperatures. Interestingly, it is noted that when a material withstands temperatures, it will equally withstand the thermal stresses that inherently will be developed in it. From the results, the work came up with a table showing the range of these slope figures of equations, a point was also found for a vital recommendation for further studies, where such figures can be used to check the suitability for thermal stress levels and the lifetime of combustor of such thickness.
文摘Thermal stresses in the combustor of gas-turbines are computed using non-dimensional parameters. Buckingham pi theorem was used to arrange the listed relevant parameters into non-dimensional groups. In testing the validity of the functional relation of the non-dimensional independent parameters, use is made of the prevailing temperatures of the combustor in operation. A computer program was used to enhance computations. The results showed an interesting way of influencing the axial stresses. To reduce stresses in gas-turbine combustors, a method of varying the independent parameter that is of radius ratio oriented and thickness dependent was adopted. This showed a reduction of the axial stresses to minimal levels using the parameters. Plots were made and a point of inflection that manifested itself in the presentation of the axial stress function was further investigated upon. It turned out to be a point of abnormal stress level and out-of-trend temperature profile. The use of non-dimensional consideration proved adequate in the computation of axial stresses. The results showed a 2 percent difference from existing values of stresses got from a transient thermal loading of a combustor.