With the availability of distributed generation (DG), clusters that can autonomously manage their energy profile are emerging in the power grid. These autonomous clusters manage their load profiles by orchestrating th...With the availability of distributed generation (DG), clusters that can autonomously manage their energy profile are emerging in the power grid. These autonomous clusters manage their load profiles by orchestrating their energy resources, such as DG, storage, flexible energy consuming appliances, etc. The performance of such an autonomous cluster depends on the composition of its energy resources. In this paper, we study how the performance of a cluster is affected by adding energy resources such as generating units, storage systems or consuming appliances. First, we characterize the energy resources by parameters that describe their relevant properties. Afterwards, we describe a comprehensive set of performance indicators of a cluster that capture the economical, environmental, and social aspects. We present a model that shows how the energy resources influence the performance indicators of the cluster. We have tested our model with a case study, revealing its effectiveness to evaluate the value added by an energy resource to a cluster.展开更多
With the growing concerns about sustainable energy, energy efficiency and energy security, the electrical power system is undergoing major changes. Distributed energy sources are becoming widely available at the lower...With the growing concerns about sustainable energy, energy efficiency and energy security, the electrical power system is undergoing major changes. Distributed energy sources are becoming widely available at the lower parts of the grid. As a result, more and more end consumers are transforming from passive consumers to active “prosumers” that can autonomously generate, store, import and/or export power. As prosumers increasingly dominate the power system, the system demands capability that allows enormous number of stakeholders with heterogeneous types to exchange power on the grid. Unfortunately, the classical power system cannot efficiently handle this scenario since it was designed for centralized power distribution. Thus, restructuring the rather old power system is indispensable. In this paper, we apply the holonic approach to structure the smart grid as a system that is bottom-up organized from autonomous prosumers that are recursively clustered at various aggregation layers. Based on this, we present a control architecture of the smart grid using holonic concepts. Our control architecture is characterized by autonomy of the prosumers, distributed control, recursive self-similar control structures at different aggregation levels. Further, we present a service oriented architecture (SOA) framework that models the control functions that make up the holonic control architecture. Our proposed control architecture is tested using a simulation set-up.展开更多
文摘With the availability of distributed generation (DG), clusters that can autonomously manage their energy profile are emerging in the power grid. These autonomous clusters manage their load profiles by orchestrating their energy resources, such as DG, storage, flexible energy consuming appliances, etc. The performance of such an autonomous cluster depends on the composition of its energy resources. In this paper, we study how the performance of a cluster is affected by adding energy resources such as generating units, storage systems or consuming appliances. First, we characterize the energy resources by parameters that describe their relevant properties. Afterwards, we describe a comprehensive set of performance indicators of a cluster that capture the economical, environmental, and social aspects. We present a model that shows how the energy resources influence the performance indicators of the cluster. We have tested our model with a case study, revealing its effectiveness to evaluate the value added by an energy resource to a cluster.
文摘With the growing concerns about sustainable energy, energy efficiency and energy security, the electrical power system is undergoing major changes. Distributed energy sources are becoming widely available at the lower parts of the grid. As a result, more and more end consumers are transforming from passive consumers to active “prosumers” that can autonomously generate, store, import and/or export power. As prosumers increasingly dominate the power system, the system demands capability that allows enormous number of stakeholders with heterogeneous types to exchange power on the grid. Unfortunately, the classical power system cannot efficiently handle this scenario since it was designed for centralized power distribution. Thus, restructuring the rather old power system is indispensable. In this paper, we apply the holonic approach to structure the smart grid as a system that is bottom-up organized from autonomous prosumers that are recursively clustered at various aggregation layers. Based on this, we present a control architecture of the smart grid using holonic concepts. Our control architecture is characterized by autonomy of the prosumers, distributed control, recursive self-similar control structures at different aggregation levels. Further, we present a service oriented architecture (SOA) framework that models the control functions that make up the holonic control architecture. Our proposed control architecture is tested using a simulation set-up.