The Hamiltonian describing a composite fermion system is usually presented in a phenomenological way. By using a classical nonrelativistic U(1) × U(1) gauge field model for the electromagnetic interaction of elec...The Hamiltonian describing a composite fermion system is usually presented in a phenomenological way. By using a classical nonrelativistic U(1) × U(1) gauge field model for the electromagnetic interaction of electrons, we show how to obtain the mean-field Hamiltonian describing composite fermions in 2 + 1 dimensions. In order to achieve this goal, the Dirac Hamiltonian formalism for constrained systems is used. Furthermore, we compare these results with the ones corresponding to the inclusion of a topological mass term for the electromagnetic field in the Lagrangian.展开更多
文摘The Hamiltonian describing a composite fermion system is usually presented in a phenomenological way. By using a classical nonrelativistic U(1) × U(1) gauge field model for the electromagnetic interaction of electrons, we show how to obtain the mean-field Hamiltonian describing composite fermions in 2 + 1 dimensions. In order to achieve this goal, the Dirac Hamiltonian formalism for constrained systems is used. Furthermore, we compare these results with the ones corresponding to the inclusion of a topological mass term for the electromagnetic field in the Lagrangian.