In line X-ray phase contrast micro-computed tomography (IL-XPCT), which can be implemented at third generation synchrotron radiation sources or by using a micro-focus X-ray tube, is a powerful technique for non-dest...In line X-ray phase contrast micro-computed tomography (IL-XPCT), which can be implemented at third generation synchrotron radiation sources or by using a micro-focus X-ray tube, is a powerful technique for non-destructive, high-resolution investigations of a broad variety of materials. At the Shanghai Synchrotron Radiation Facility (SSRF), the X-ray Imaging and Biomedical Applications Beamline was built and started regular user operation in May 2009. Both qualitative (without phase retrieval) and quantitative (with phase retrieval) three-dimensional IL-XPCT experimental techniques have been established at the beamline IL-XPCT experiments of a test sample (plastic pipes) used to evaluate the technique, and of a biological sample (locust) at the beamline are reported. Two series of images, qualitative and quantitative, including tomographic slices and three-dimensional rendering images were obtained. In qualitative images, there is a strong edge-enhancement which leads to very clear sample contours, while in quantitative images, the edge-enhancement fades but quantitative measurement of sample's phase information could be achieved. The experiments demonstrate that the combination of qualitative and quantitative images is useful for biological sample studies.展开更多
基金Supported by the Major Research Plan of the National Natural Science Foundation of China (No.2010CB834301)the National Natural Science Foundation of China (Nos.10805071 and 10705020)+2 种基金the Chinese Academy of Sciences Key Project of International Co-operation (No.GJHZ09058)the Shanghai Key Project of Basic Research (No.08JC1411900)supported by ICTP TRIL Programme
文摘In line X-ray phase contrast micro-computed tomography (IL-XPCT), which can be implemented at third generation synchrotron radiation sources or by using a micro-focus X-ray tube, is a powerful technique for non-destructive, high-resolution investigations of a broad variety of materials. At the Shanghai Synchrotron Radiation Facility (SSRF), the X-ray Imaging and Biomedical Applications Beamline was built and started regular user operation in May 2009. Both qualitative (without phase retrieval) and quantitative (with phase retrieval) three-dimensional IL-XPCT experimental techniques have been established at the beamline IL-XPCT experiments of a test sample (plastic pipes) used to evaluate the technique, and of a biological sample (locust) at the beamline are reported. Two series of images, qualitative and quantitative, including tomographic slices and three-dimensional rendering images were obtained. In qualitative images, there is a strong edge-enhancement which leads to very clear sample contours, while in quantitative images, the edge-enhancement fades but quantitative measurement of sample's phase information could be achieved. The experiments demonstrate that the combination of qualitative and quantitative images is useful for biological sample studies.