Climate change is increasingly affecting farm-level decisions on when to plant and which climate smart agriculture (CSA) options to use. This study was conducted to determine the profitability and farmer acceptability...Climate change is increasingly affecting farm-level decisions on when to plant and which climate smart agriculture (CSA) options to use. This study was conducted to determine the profitability and farmer acceptability of different CSA options for maize-bean production in drought-prone areas of Uganda. It was conducted on-farm in Rakai and Nakasongola districts during 2020 and 2021. Variables included: planting date (early vs late);varieties (common beans: NABE 4 and NAROBEAN 2, and maize: Longe 5 and Bazooka);intercropping versus pure stand;and fertiliser use (manure, Diammonium phosphate (DAP) or combination). The experimental design was split-split plot, replicated six times. Over two years, early planting caused 16% and up to 46% higher yields of maize and beans, respectively, than late planting, resulting in 14% - 28% and 18% - 43% higher Benefit/Cost (B/C) ratio for maize and beans, respectively. Intercropping reduced maize and beans yield by 16% - 25% and 52% - 57%, respectively. The B/C was highest for sole maize;intercropping was more profitable than sole beans. Fertilizer (DAP) was most profitable when Bazooka was early-planted as sole crop followed by intercrop. For late planted-crop, manure was better. These practices were more beneficial when applied simultaneously for both crops excluding bean variety. Farmers’ lessons stressed the importance of early planting and fertilizer use;however, majority indicated they were to adopt more than two of the practices tested.展开更多
文摘Climate change is increasingly affecting farm-level decisions on when to plant and which climate smart agriculture (CSA) options to use. This study was conducted to determine the profitability and farmer acceptability of different CSA options for maize-bean production in drought-prone areas of Uganda. It was conducted on-farm in Rakai and Nakasongola districts during 2020 and 2021. Variables included: planting date (early vs late);varieties (common beans: NABE 4 and NAROBEAN 2, and maize: Longe 5 and Bazooka);intercropping versus pure stand;and fertiliser use (manure, Diammonium phosphate (DAP) or combination). The experimental design was split-split plot, replicated six times. Over two years, early planting caused 16% and up to 46% higher yields of maize and beans, respectively, than late planting, resulting in 14% - 28% and 18% - 43% higher Benefit/Cost (B/C) ratio for maize and beans, respectively. Intercropping reduced maize and beans yield by 16% - 25% and 52% - 57%, respectively. The B/C was highest for sole maize;intercropping was more profitable than sole beans. Fertilizer (DAP) was most profitable when Bazooka was early-planted as sole crop followed by intercrop. For late planted-crop, manure was better. These practices were more beneficial when applied simultaneously for both crops excluding bean variety. Farmers’ lessons stressed the importance of early planting and fertilizer use;however, majority indicated they were to adopt more than two of the practices tested.