A longer stem elongation phase (from the terminal spikelet-TS to the anthesis-ANT phases) increases grain production due to an increase in spikelet fertility. However, the mechanism behind the greater number of fertil...A longer stem elongation phase (from the terminal spikelet-TS to the anthesis-ANT phases) increases grain production due to an increase in spikelet fertility. However, the mechanism behind the greater number of fertile flowers that occur when the duration of stem elongation is modified by photoperiod and vernalization is not fully understood. The goal of this study was to investigate the effect of combinations of photoperiod and vernalization on the duration of stem elongation and spikelet fertility in wheat. Thus, a greenhouse experiment was performed by subjecting 13 wheat genotypes to two vernalization regimes (V0—non-vernalized plants and V40—plants with 40 vernalization days) and to two photoperiod regimes (NP—natural and NP + 6—photoperiod extended by six hours), during the stem elongation phase. The natural photoperiod increased the spikelet fertility of eight cultivars without a corresponding increased duration of the TS-ANT phase, suggesting the existence of a direct effect of photoperiod on increased spikelet fertility. Vernalization increased the duration of the TS-ANT phase, without influencing spikelet fertility. There was genetic variability in the responses to photoperiod and vernalization.展开更多
Barley breeding program in Brazil has focused on characteristics associated with malting for beer purposes as the main economic application for this crop. The breeding process focused on selection for grain yield, dis...Barley breeding program in Brazil has focused on characteristics associated with malting for beer purposes as the main economic application for this crop. The breeding process focused on selection for grain yield, disease resistance and malting quality. The objective of this work was to quantify the genetic gain in barley grain yield from 1968 and 2008 in Brazil and to identify the physiological characteristics associated with the increase of grain yield. Field experiments with five 2-row barley cultivars were tested from 2011 to 2013 in the absence of biotic and abiotic stresses and with mechanical restriction to lodging. The ANOVA showed no genetic gain until 1980 with average grain yield of 4.632 kg/ha. After 1980, there was a productivity increase of 59.9 kg/ha/year. No correlation was observed between total maturity biomass and the year of release of the cultivars, while harvest index and plant height, were significantly improved. The main component associated with grain yield was the number of grains/m2, due to the higher number of spikes/m2 associated to a greater contribution of the tillers in the modern cultivars.展开更多
文摘A longer stem elongation phase (from the terminal spikelet-TS to the anthesis-ANT phases) increases grain production due to an increase in spikelet fertility. However, the mechanism behind the greater number of fertile flowers that occur when the duration of stem elongation is modified by photoperiod and vernalization is not fully understood. The goal of this study was to investigate the effect of combinations of photoperiod and vernalization on the duration of stem elongation and spikelet fertility in wheat. Thus, a greenhouse experiment was performed by subjecting 13 wheat genotypes to two vernalization regimes (V0—non-vernalized plants and V40—plants with 40 vernalization days) and to two photoperiod regimes (NP—natural and NP + 6—photoperiod extended by six hours), during the stem elongation phase. The natural photoperiod increased the spikelet fertility of eight cultivars without a corresponding increased duration of the TS-ANT phase, suggesting the existence of a direct effect of photoperiod on increased spikelet fertility. Vernalization increased the duration of the TS-ANT phase, without influencing spikelet fertility. There was genetic variability in the responses to photoperiod and vernalization.
文摘Barley breeding program in Brazil has focused on characteristics associated with malting for beer purposes as the main economic application for this crop. The breeding process focused on selection for grain yield, disease resistance and malting quality. The objective of this work was to quantify the genetic gain in barley grain yield from 1968 and 2008 in Brazil and to identify the physiological characteristics associated with the increase of grain yield. Field experiments with five 2-row barley cultivars were tested from 2011 to 2013 in the absence of biotic and abiotic stresses and with mechanical restriction to lodging. The ANOVA showed no genetic gain until 1980 with average grain yield of 4.632 kg/ha. After 1980, there was a productivity increase of 59.9 kg/ha/year. No correlation was observed between total maturity biomass and the year of release of the cultivars, while harvest index and plant height, were significantly improved. The main component associated with grain yield was the number of grains/m2, due to the higher number of spikes/m2 associated to a greater contribution of the tillers in the modern cultivars.