Variable-top stem biomass models at the tree level for second growth forests of roble (Nothofagus obliqua), rauli(Nothofagus alpina), and coigüe (Nothofagus dombeyi) were fitted by a simultaneous density-integral...Variable-top stem biomass models at the tree level for second growth forests of roble (Nothofagus obliqua), rauli(Nothofagus alpina), and coigüe (Nothofagus dombeyi) were fitted by a simultaneous density-integral system, which combines a stem taper model and a wood basic density model. For each model, an autoregressive structure of order 2 and a power equation of residual variance were incorporated to reduce residual autocorrelation and heteroscedasticity, respectively. By using dummy variables in the regression analysis, zonal effects on the parameters in the variable-top stem biomass equations were detected in roble. Consequently, equations for clusters of zones were obtained. These equations presented significant parameters and a high precision in both fitting and validation processes (i.e., CV<11.5% and CVp<11.9%, respectively), demonstrating that they are unbiased. The advantage of these types of functions is that they provide estimates of volume and biomass of sections of the stem, defined between any two points of the stem in the three species. Thus, depending on the final use of the wood and the dimensions of the tree, a stem fraction can be quantified in units of volume and the remaining fraction in units of weight.展开更多
基金financial supported by the the Corporación Nacional Forestal(CONAF)(Project 025/2012‘‘Desarrollo de herramientas de cuantificación biométrica generalizadas para el manejo y uso integral sustentable de renovales de Nothofagus spp.’’)Ⅲ Concurso del Fondo de Investigación del Bosque Nativo
文摘Variable-top stem biomass models at the tree level for second growth forests of roble (Nothofagus obliqua), rauli(Nothofagus alpina), and coigüe (Nothofagus dombeyi) were fitted by a simultaneous density-integral system, which combines a stem taper model and a wood basic density model. For each model, an autoregressive structure of order 2 and a power equation of residual variance were incorporated to reduce residual autocorrelation and heteroscedasticity, respectively. By using dummy variables in the regression analysis, zonal effects on the parameters in the variable-top stem biomass equations were detected in roble. Consequently, equations for clusters of zones were obtained. These equations presented significant parameters and a high precision in both fitting and validation processes (i.e., CV<11.5% and CVp<11.9%, respectively), demonstrating that they are unbiased. The advantage of these types of functions is that they provide estimates of volume and biomass of sections of the stem, defined between any two points of the stem in the three species. Thus, depending on the final use of the wood and the dimensions of the tree, a stem fraction can be quantified in units of volume and the remaining fraction in units of weight.