The Polycystic Ovary Syndrome (PCOS) is the most common androgenic disorder in women during reproductive life. PCOS may also be accompanied by metabolic syndrome and recent studies point to leptin as playing a role in...The Polycystic Ovary Syndrome (PCOS) is the most common androgenic disorder in women during reproductive life. PCOS may also be accompanied by metabolic syndrome and recent studies point to leptin as playing a role in disrupting infertility and in changing the energy balance in obese mice through its action on the hypothalamus. The aim is to assess the expression of the Polycomb & Trithorax Complexes genes in brain of mice transplanted with fat tissue from normal mice, in order to better understand the neuronal mechanisms underlying the reversion of PCOS. Three B6 V-Lepob/J mouse groups: Normal weight, obese and seven-day-treatment obese had their brain RNA extracted and submitted to an 84 Polycomb & Trithorax Complexes genes PCR Array plate and MetacoreTM pathways localization. Genomic profiles obtained were compared to the ones of the normal-weight-mice group. Differentially expressed genes were 13% and 26% respectively to control and treatment. Major changes were in genes: Snai1/31;Smarca1/?17;Dnmt3b/4.7;Ezh1/ 15. Altered genes were associated to canonical pathways and provided 3 networks related to epigenetics. Underlying neuronal changes caused by leptin in obese mice brain, there is an important role being played by the histone code. Here there is evidence that leptin drives the chromatin packing to a more condensed pattern. Upregulation of methyltransferase genes, like Ezh1, favors this thought. In summary the Polycomb & Trithorax complexes might answer for the silencing of some downregulated genes in the obese mice brain when exposed to leptin.展开更多
Introduction: Polycystic ovarian syndrome (PCOS) is undoubtedly the commonest androgen disorder in woman’s fertile period and certainly one of the most prevalent causes of anovulation. The syndrome has an estimated p...Introduction: Polycystic ovarian syndrome (PCOS) is undoubtedly the commonest androgen disorder in woman’s fertile period and certainly one of the most prevalent causes of anovulation. The syndrome has an estimated prevalence of 4% - 10% among women of childbearing age. Previously, our group demonstrated the effect of gonadal white adipose tissue transplantation from wild-type lean and fertile female mice to isogenic obese anovulatory ob/ob mice. These complex metabolic interrelationships between obesity and PCOS have yet to be fully understood. The aim of this study was to evaluate the effect of gonadal white adipose tissue (WAT) transplantation from the wild-type lean and fertile female mice to isogenic obese, anovulatory mice (Lep ob/Lep ob) on the expression of glycolysis- and TCA cycle-related genes and obtain a general view of the glucose metabolism in the brain of these animals. Methods: Fifteen ob/ob mice ranging from 2 to 3 months of age were divided into 3 experimental groups: control normal weight (n = 5), obese control (n = 5) and obese 7 days leptin treated (n = 5). The whole brains of the mice were processed for RNA extraction. The samples from each group were used to perform PCR assays using an array plate containing 84 primers to study the glucose metabolism-related genes. Results: The glycolysis- and TCA cycle-related genes were significantly downregulated. The most significantly affected genes were as follows: for glycolysis (fold regulation with p < 0.05):Pgm1,Bpgm,Aldob, andEno3 (119, 45, 18, and 28 times less, respectively);and for the TCA cycle (fold regulation with p < 0.05):Cs,Idh3b, andMdh2 (84, 27, and 37 times less, respectively).Conclusion: The seven-day leptin treated mice show a decrease in the glucose metabolism. These results confirm the ability of the adipose tissue-derived hormone leptin to regulate early crucial genes that are related to glycolysis mechanisms and to the TCA cycle. This hormone seems to revert early the central physiological conditions that are associated with PCOS;however, the morphological alterations can only be observed within a 45-day treatment.展开更多
文摘The Polycystic Ovary Syndrome (PCOS) is the most common androgenic disorder in women during reproductive life. PCOS may also be accompanied by metabolic syndrome and recent studies point to leptin as playing a role in disrupting infertility and in changing the energy balance in obese mice through its action on the hypothalamus. The aim is to assess the expression of the Polycomb & Trithorax Complexes genes in brain of mice transplanted with fat tissue from normal mice, in order to better understand the neuronal mechanisms underlying the reversion of PCOS. Three B6 V-Lepob/J mouse groups: Normal weight, obese and seven-day-treatment obese had their brain RNA extracted and submitted to an 84 Polycomb & Trithorax Complexes genes PCR Array plate and MetacoreTM pathways localization. Genomic profiles obtained were compared to the ones of the normal-weight-mice group. Differentially expressed genes were 13% and 26% respectively to control and treatment. Major changes were in genes: Snai1/31;Smarca1/?17;Dnmt3b/4.7;Ezh1/ 15. Altered genes were associated to canonical pathways and provided 3 networks related to epigenetics. Underlying neuronal changes caused by leptin in obese mice brain, there is an important role being played by the histone code. Here there is evidence that leptin drives the chromatin packing to a more condensed pattern. Upregulation of methyltransferase genes, like Ezh1, favors this thought. In summary the Polycomb & Trithorax complexes might answer for the silencing of some downregulated genes in the obese mice brain when exposed to leptin.
文摘Introduction: Polycystic ovarian syndrome (PCOS) is undoubtedly the commonest androgen disorder in woman’s fertile period and certainly one of the most prevalent causes of anovulation. The syndrome has an estimated prevalence of 4% - 10% among women of childbearing age. Previously, our group demonstrated the effect of gonadal white adipose tissue transplantation from wild-type lean and fertile female mice to isogenic obese anovulatory ob/ob mice. These complex metabolic interrelationships between obesity and PCOS have yet to be fully understood. The aim of this study was to evaluate the effect of gonadal white adipose tissue (WAT) transplantation from the wild-type lean and fertile female mice to isogenic obese, anovulatory mice (Lep ob/Lep ob) on the expression of glycolysis- and TCA cycle-related genes and obtain a general view of the glucose metabolism in the brain of these animals. Methods: Fifteen ob/ob mice ranging from 2 to 3 months of age were divided into 3 experimental groups: control normal weight (n = 5), obese control (n = 5) and obese 7 days leptin treated (n = 5). The whole brains of the mice were processed for RNA extraction. The samples from each group were used to perform PCR assays using an array plate containing 84 primers to study the glucose metabolism-related genes. Results: The glycolysis- and TCA cycle-related genes were significantly downregulated. The most significantly affected genes were as follows: for glycolysis (fold regulation with p < 0.05):Pgm1,Bpgm,Aldob, andEno3 (119, 45, 18, and 28 times less, respectively);and for the TCA cycle (fold regulation with p < 0.05):Cs,Idh3b, andMdh2 (84, 27, and 37 times less, respectively).Conclusion: The seven-day leptin treated mice show a decrease in the glucose metabolism. These results confirm the ability of the adipose tissue-derived hormone leptin to regulate early crucial genes that are related to glycolysis mechanisms and to the TCA cycle. This hormone seems to revert early the central physiological conditions that are associated with PCOS;however, the morphological alterations can only be observed within a 45-day treatment.