Dielectric resonator methods constitute one of the most useful techniques for the measurement of electromagnetic material properties in the microwave frequency range. Several geometric configurations are used for this...Dielectric resonator methods constitute one of the most useful techniques for the measurement of electromagnetic material properties in the microwave frequency range. Several geometric configurations are used for this purpose and, in the present paper, we consider the case of a dielectric rod enclosed in a cylindrical metallic enclosure. To carry out dielectric measurements in this system it is necessary to know the highest permittivity constant value for which the resonance condition still can be attained into the cavity. Using an approach based on magnetic and electric Hertzian potentials we have derived the set of TE and TM modes for the relevant geometry described and, then we have calculated the valid dielectric permittivity constant range of measurements for low-loss materials in a cylindrical cavity using a simple resonance frequency condition. Finally, we present a simple application of this method in order to determine the dielectric permittivity constant of heavy oil with 11 API.展开更多
文摘Dielectric resonator methods constitute one of the most useful techniques for the measurement of electromagnetic material properties in the microwave frequency range. Several geometric configurations are used for this purpose and, in the present paper, we consider the case of a dielectric rod enclosed in a cylindrical metallic enclosure. To carry out dielectric measurements in this system it is necessary to know the highest permittivity constant value for which the resonance condition still can be attained into the cavity. Using an approach based on magnetic and electric Hertzian potentials we have derived the set of TE and TM modes for the relevant geometry described and, then we have calculated the valid dielectric permittivity constant range of measurements for low-loss materials in a cylindrical cavity using a simple resonance frequency condition. Finally, we present a simple application of this method in order to determine the dielectric permittivity constant of heavy oil with 11 API.