Background: To what extent uric acid (UA) levels and/or metabolic syndrome (Mets) contribute to the onset of chronic kidney disease (CKD) is largely unknown. The present study explores how these two factors have an as...Background: To what extent uric acid (UA) levels and/or metabolic syndrome (Mets) contribute to the onset of chronic kidney disease (CKD) is largely unknown. The present study explores how these two factors have an association with the new incidence of CKD. Methods: Study design is a cohort study. A total of 14,485 participants were eligible for the cross-sectional analysis on UA levels and the prevalence of Mets. Among those individuals, 8,223 participants without CKD and 4,839 without Mets were eligible for the longitudinal analysis of the new incidence of CKD. Parameters monitored were body mass index, systolic and diastolic blood pressure, serum creatinine concentration, estimated glolerular filtration rate, lipid profiles, plasma glucose, HbA1c. The primary predictor was the level of UA and Mets to explain the newly-developed CKD. The observation period was 4 years. Results: In a cross-sectional analysis, higher UA levels were associated with the greater prevalence of Mets. In addition, UA levels were associated with the numbers of the Mets constituents in both genders. In a longitudinal analysis, higher UA levels were associated with the greater rate of CKD and the greater incidence of Mets. In addition, the incidence of CKD at year 4 was influenced by the presence of hyperuricemia, but not by that of the Mets. The odd ratio (OR) to predict the CKD incidence was 1.42 (95% confidence intervals (CI), 0.52 to 3.78) in the presence of Mets alone, 2.10 (95% CI, 1.36 to 3.23) in the presence of hyperuricemia alone, and 3.56 (95% CI, 1.55 to 8.21) in the presence of both. Conclusion: Hyperuricemia has a greater association with the incidence of CKD than Mets does. Hyperuricemia complicated by Mets is additionally detrimental.展开更多
文摘Background: To what extent uric acid (UA) levels and/or metabolic syndrome (Mets) contribute to the onset of chronic kidney disease (CKD) is largely unknown. The present study explores how these two factors have an association with the new incidence of CKD. Methods: Study design is a cohort study. A total of 14,485 participants were eligible for the cross-sectional analysis on UA levels and the prevalence of Mets. Among those individuals, 8,223 participants without CKD and 4,839 without Mets were eligible for the longitudinal analysis of the new incidence of CKD. Parameters monitored were body mass index, systolic and diastolic blood pressure, serum creatinine concentration, estimated glolerular filtration rate, lipid profiles, plasma glucose, HbA1c. The primary predictor was the level of UA and Mets to explain the newly-developed CKD. The observation period was 4 years. Results: In a cross-sectional analysis, higher UA levels were associated with the greater prevalence of Mets. In addition, UA levels were associated with the numbers of the Mets constituents in both genders. In a longitudinal analysis, higher UA levels were associated with the greater rate of CKD and the greater incidence of Mets. In addition, the incidence of CKD at year 4 was influenced by the presence of hyperuricemia, but not by that of the Mets. The odd ratio (OR) to predict the CKD incidence was 1.42 (95% confidence intervals (CI), 0.52 to 3.78) in the presence of Mets alone, 2.10 (95% CI, 1.36 to 3.23) in the presence of hyperuricemia alone, and 3.56 (95% CI, 1.55 to 8.21) in the presence of both. Conclusion: Hyperuricemia has a greater association with the incidence of CKD than Mets does. Hyperuricemia complicated by Mets is additionally detrimental.