期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Soil fixation and erosion control by Haloxylon persicum roots in arid lands, Iran 被引量:4
1
作者 ehsan abdi Hamid R SALEH +1 位作者 Baris MAJNONIAN Azade DELJOUEI 《Journal of Arid Land》 SCIE CSCD 2019年第1期86-96,共11页
Vegetation roots contribute to soil fixation and reinforcement, thus improving soil resistance against erosion. Generally, the amount of soil fixation presented by roots mainly depends on root density and tensile stre... Vegetation roots contribute to soil fixation and reinforcement, thus improving soil resistance against erosion. Generally, the amount of soil fixation presented by roots mainly depends on root density and tensile strength. In the present study, we conducted the research in order to further understand the biotechnical properties of Haloxylon persicum and also to quantify its role in increasing soil cohesion in arid lands of Iran. Ten H. persicum shrubs were randomly selected for root distribution and strength investigations, in which five samples were set on flat terrain and other five samples on a moderate slope terrain. The profile trench method was used to assess the root area ratio(RAR) as the index of root density and distribution. Two profiles were dug around each sample, up and downslope for sloped treatment and north and south sides for flat treatment. The results showed that RAR increased with increasing soil depth and significantly decreased in 40–50 cm layers of downhill(0.320%) and 50–60 cm for uphill(0.210%). The minimum values for the northward and southward profiles were 0.003% and 0.003%, respectively, while the maximum values were 0.260% and 0.040%, respectively. The relationship between the diameter of root samples and root tensile strength followed a negative power function, but tensile force increased with increasing root diameter following a positive power function. The pattern of increased cohesion changes in soil profile was relatively similar to RAR curves. The maximum increased cohesion due to the presence of roots in uphill and downhill sides were 0.470 and 1.400 kPa, respectively. In the flat treatment, the maximum increased cohesions were 0.570 and 0.610 kPa in northward and southward profiles, respectively. The analysis of variance showed that wind and slope induced stresses did not have any significant effect on the amount of increased cohesion of H. persicum. The findings served to develop knowledge about biotechnical properties of H. persicum root system that can assist in assessing the efficiency of afforestation and restoration measures for erosion control in arid lands. 展开更多
关键词 biotechnical properties increased SOIL COHESION profile TRENCH method root area ratio (RAR) tensile strength
下载PDF
伊朗里海森林山坡上生长的欧洲鹅耳根系分布和抗张强度研究 被引量:4
2
作者 ehsan abdi Baris Majnounian +1 位作者 Hassan Rahimi Mahmud Zobeiri 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第2期105-110,I0001,共7页
Biomechanical characteristics of the root system of hornbeam (Carpinus betulus) were assessed by measuring Root Area Ratio (RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hil... Biomechanical characteristics of the root system of hornbeam (Carpinus betulus) were assessed by measuring Root Area Ratio (RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hilly terrain of Northern Iran. RAR values of the roots were obtained using profile trenching method at soil depth of the top 0.1 m. In total 123 root specimens were analyzed for tensile strength. Results indicate that in general, RAR decreases with depth, following a power function. The RAR values in up and down slopes have no significant statistical differences. In most cases, the maximum RAR values were located in soil depth of the top 0.1 m, with maximum rooting depth at about 0.75 m. The minimum and maximum RAR values along the profiles were 0.004% and 6.431% for down slope and 0.004% and 3.995% for up slope, respectively. The number of roots in the up and down slope trenches was not significantly different. In the same manner as for RAR, number of roots distributing with depth was satisfactorily approximated a power function. The penetration depths of above 90 percent of the roots were at soil depths of 50 cm and 60 cm for up and down slopes, respectively. Results of Spearman's bivariate correlation showed no significant correlation between the RAR value with tree diameter and gradient of slope and number of roots. The mean value of root tensile strength was 31.51 ± 1.05 MPa and root tensile strength decreased with the increase in root diameter, following a power law equation. Using ANCOVA, we found intraspecies variation of tensile strength. 展开更多
关键词 BIOMECHANICAL Hornbeam Carpinus betulus root area ratio (RAR) root system root tensile strength.
下载PDF
Distribution and tensile strength of Hornbeam(Carpinus betulus) roots growing on slopes of Caspian Forests,Iran 被引量:2
3
作者 ehsan abdi Baris Majnounian +1 位作者 Hassan Rahimi Mahmud Zobeiri 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第A2期105-110,共6页
Biomechanical characteristics of the root system of hornbeam(Carpinus betulus) were assessed by measuring Root Area Ratio(RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hilly ter... Biomechanical characteristics of the root system of hornbeam(Carpinus betulus) were assessed by measuring Root Area Ratio(RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hilly terrain of Northern Iran.RAR values of the roots were obtained using profile trenching method at soil depth of the top 0.1 m.In total 123 root specimens were analyzed for tensile strength.Results indicate that in general, RAR decreases with depth, following a power function.The RAR values in up and down slopes have no significant statistical differences.In most cases, the maximum RAR values were located in soil depth of the top 0.1 m, with maximum rooting depth at about 0.75 m.The minimum and maximum RAR values along the profiles were 0.004% and 6.431% for down slope and 0.004% and 3.995% for up slope, respectively.The number of roots in the up and down slope trenches was not significantly different.In the same manner as for RAR, number of roots distributing with depth was satisfactorily approximated a power function.The penetration depths of above 90 percent of the roots were at soil depths of 50 cm and 60 cm for up and down slopes, respectively.Results of Spearman's bivariate correlation showed no significant correlation between the RAR value with tree diameter and gradient of slope and number of roots.The mean value of root tensile strength was 31.51 ± 1.05 MPa and root tensile strength decreased with the increase in root diameter, follow-ing a power law equation.Using ANCOVA, we found intraspecies variation of tensile strength. 展开更多
关键词 BIOMECHANICAL Hornbeam CARPINUS betulus ROOT area ratio(RAR) ROOT system ROOT tensile strength.
下载PDF
How does organic matter affect the physical and mechanical properties of forest soil? 被引量:1
4
作者 ehsan abdi Shojaat Babapour +2 位作者 Baris Majnounian Ghavamodin Zahedi Amiri Azade Deljouei 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第3期654-659,共6页
Determining the physical and mechanical properties of soil and its behavior for engineering projects is essential for road construction operations. One of the most important principles in forest road construction, whi... Determining the physical and mechanical properties of soil and its behavior for engineering projects is essential for road construction operations. One of the most important principles in forest road construction, which is usually neglected, is to avoid mixing organic matter with road materials during excavation and embankment construction. The current study aimed to assess the influence of organic matter on the physical properties and mechanical behaviors of forest soil and to analyze the relation between the amount of organic matter and the behavior of forest soil as road material. A typical soil sample from the study area was collected beside a newly constructed roadbed. The soil was mixed with different percentages of organic matter(control treatment, 5, 10, and 15% by mass) and different tests including Atterberg limits, standard compaction, and California bearing ratio(CBR) tests were conducted on these different soil mixtures. The results showed that soil plasticity increased linearly with increasing organic matter.Increasing the organic matter from 0%(control) to 15%resulted in an increase of 11.64% of the plastic limit and 15.22% of the liquid limit after drying at 110 ℃. Also,increasing the organic matter content reduced the soil maximum dry density and increased the optimum moisture content. Increasing the organic matter from 0 to 15% resulted in an increase of 11.0% of the optimum moisture content and a decrease of 0.29 g/cm;of the maximum dry density. Organic matter decreased the CBR, which is used as the index of road strength. Adding 15% organic matter to the soil resulted in a decrease of the CBR from 15.72 to 4.75%. There was a significant difference between the two drying temperatures(60 and 110 ℃) for the same organic matter mixtures with lower water content values after drying at 60 ℃. The results revealed the adverse influence of organic matter on soil engineering properties and showed the importance of organic matter removal before excavation and fill construction. 展开更多
关键词 Atterberg limits California bearing ratio Hyrcanian forest Organic matter content Soil compaction
下载PDF
Improving cross drain systems to minimize sediment delivery using GIS
5
作者 ehsan abdi Saeed Rahbari SISAKHT Mostafa Moghadami RAD 《Forestry Studies in China》 CAS 2012年第4期299-306,共8页
A well developed network of roads must exist as a necessary infrastructure system in modem forestry to facilitate forest op- erations. But forest roads have the potential to disrupt the drainage characteristics of wat... A well developed network of roads must exist as a necessary infrastructure system in modem forestry to facilitate forest op- erations. But forest roads have the potential to disrupt the drainage characteristics of watersheds and lead to negative impacts on the environment with increased erosion and sediment yields. Numerous factors affect surface erosion of roads and sediment production potential; determining and ranking them could be a guide for management decisions to erosion control. In this study, the CULSED model (as an extension of ArcGIS) was used to estimate sediment delivery and the distribution of a road network, given the exist- ing culverts. Using the model, some culverts were added to the road network around places with high sediment delivery in order to minimize it. After a correlation analysis and adjustment between sediment production and the factors, i.e., road width, road gradient, age of road and vegetation cover, the trend of changes in sediment delivery with model changes in the input was investigated with a sensitivity analysis of the model. The results show that adding new culverts to the road resulted in a significant reduction of sediment delivery. The most important factor affecting sediment delivery was road width, followed by road gradient, vegetation cover and age of road. Road width and gradient were positively correlated with sediment delivery, while vegetation cover and age of road were neg- atively correlated. The best model to show the relation between sediment delivery and road width as well as with road gradient was a linear model, for vegetation cover a cubic equation and for road age a power model. The results of sensitivity analysis showed that sediment delivery had the greatest sensitivity to changes of road width and was least sensitive to changes in the age of the road. This model can help to estimate sediment delivery with its spatial distribution, which can be used for optimization of cross drain systems and strategies of sediment control. Application of the model requires field trials to acquire the necessary input data. The reliability of our results is a function of the accuracy of inputs, especially digital elevation model. 展开更多
关键词 forest road cross drain CULVERT sediment delivery sensitivity analysis CULSED
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部