期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Neutronic design investigation of a liquid injection-based second shutdown system for a typical research reactor using MCNPX 被引量:1
1
作者 ehsan boustani Mostafa Hassanzadeh 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第3期51-60,共10页
Safety systems, built on state-of-the-art technology, are essential for achieving acceptable levels of plant safety to minimize hazards to the reactor and the general public. The second shutdown system(SSS) as an engi... Safety systems, built on state-of-the-art technology, are essential for achieving acceptable levels of plant safety to minimize hazards to the reactor and the general public. The second shutdown system(SSS) as an engineered safety feature and a part of the reactor protection system(RPS) is a means for rapidly shutting down a nuclear reactor, keeping it in a subcritical state and serving as a backup to the first shutdown system(FSS). In this research, one SSS with two types of optimum chamber designs is proposed that take into account the main current characteristic features of the Tehran research reactor with improvements over earlier designs. They are based on a liquid neutron absorber injection that is preferably different, diverse, and independent from the FSS based on the rod drop mechanism. The major design characteristics of this SSS with two different chambers were investigated using MCNPX 2.6.0 code. The performed calculations showed that the designed SSS is a reliable shutdown system, assuring an appropriate shutdown margin and injection time, with no significant effects on the effective delayed neutron fraction while causing minimal variations to the core structure. Further, the reasonable financial cost and the prolongation of the operation cycle are additional advantages of this design. 展开更多
关键词 TEHRAN research reactor SECOND SHUTDOWN system Nuclear safety Design criteria MCNPX code
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部