Noise (from different sources), data dimension, and fading can have dramatic effects on the performance of wireless sensor networks and the decisions made at the fusion center. Any of these parameters alone or their c...Noise (from different sources), data dimension, and fading can have dramatic effects on the performance of wireless sensor networks and the decisions made at the fusion center. Any of these parameters alone or their combined result can affect the final outcome of a wireless sensor network. As such, total elimination of these parameters could also be damaging to the final outcome, as it may result in removing useful information that can benefit the decision making process. Several efforts have been made to find the optimal balance between which parameters, where, and how to remove them. For the most part, experts in the field agree that it is more beneficial to remove noise and/or compress data at the node level. We have developed computationally low power, low bandwidth, and low cost filters that will remove the noise and compress the data so that a decision can be made at the node level. This wavelet-based method is guaranteed to converge to a stationary point for both uncorrelated and correlated sensor data. This is mainly stressed so that the low power, low bandwidth, and low computational overhead of the wireless sensor network node constraints are met while fused datasets can still be used to make reliable decisions.展开更多
In this article an approach to surface image quality assessment for surface pattern and object recognition, classification, and identification has been described. The surface quality assessment finds many industrial a...In this article an approach to surface image quality assessment for surface pattern and object recognition, classification, and identification has been described. The surface quality assessment finds many industrial applications such as auto-mated, advanced, and autonomous manufacturing processes. Given that in most industrial applications the target surface is an unknown variable, having a tool to measure the quality of the surface in real time has a significant value. To add to the complication, in most industrial applications, the surface (and therefore its image) suffers from several physical phenomena such as noise (of several different kinds), time, phase, and frequency shifts, and other clutter caused by interference and speckles. The proposed tool should also be able to measure the level of deterioration of the surface due to these environmental effects. Therefore, evaluation of quality of a surface is not an easy task. It requires a good understanding of the processing methods used and the types of environmental processes affecting the surface. On the other hand, for a meaningful comparative analysis, some effective parameters have to be chosen and qualitatively and quantitatively measured across different settings and processes affecting the surface. Finally, any algorithm capable of handling these tasks has to be efficient, fast, and simple to qualify for the “real-time” applications.展开更多
文摘Noise (from different sources), data dimension, and fading can have dramatic effects on the performance of wireless sensor networks and the decisions made at the fusion center. Any of these parameters alone or their combined result can affect the final outcome of a wireless sensor network. As such, total elimination of these parameters could also be damaging to the final outcome, as it may result in removing useful information that can benefit the decision making process. Several efforts have been made to find the optimal balance between which parameters, where, and how to remove them. For the most part, experts in the field agree that it is more beneficial to remove noise and/or compress data at the node level. We have developed computationally low power, low bandwidth, and low cost filters that will remove the noise and compress the data so that a decision can be made at the node level. This wavelet-based method is guaranteed to converge to a stationary point for both uncorrelated and correlated sensor data. This is mainly stressed so that the low power, low bandwidth, and low computational overhead of the wireless sensor network node constraints are met while fused datasets can still be used to make reliable decisions.
文摘In this article an approach to surface image quality assessment for surface pattern and object recognition, classification, and identification has been described. The surface quality assessment finds many industrial applications such as auto-mated, advanced, and autonomous manufacturing processes. Given that in most industrial applications the target surface is an unknown variable, having a tool to measure the quality of the surface in real time has a significant value. To add to the complication, in most industrial applications, the surface (and therefore its image) suffers from several physical phenomena such as noise (of several different kinds), time, phase, and frequency shifts, and other clutter caused by interference and speckles. The proposed tool should also be able to measure the level of deterioration of the surface due to these environmental effects. Therefore, evaluation of quality of a surface is not an easy task. It requires a good understanding of the processing methods used and the types of environmental processes affecting the surface. On the other hand, for a meaningful comparative analysis, some effective parameters have to be chosen and qualitatively and quantitatively measured across different settings and processes affecting the surface. Finally, any algorithm capable of handling these tasks has to be efficient, fast, and simple to qualify for the “real-time” applications.