: Electrically induced protoplast fusion was used to produce somatic hybrids between Brassica napus L. and Sinapis alba L. Seven hybrids were obtained and verified by the simple sequence repeat and cleaved amplified p...: Electrically induced protoplast fusion was used to produce somatic hybrids between Brassica napus L. and Sinapis alba L. Seven hybrids were obtained and verified by the simple sequence repeat and cleaved amplified polymorphic sequence analysis of the gene fael, indicating that the characteristic bands from S. alba were present in the hybrids. The hybridity was also confirmed by chromosome number counting because the hybrids possessed 62 chromosomes, corresponding to the sum of fusion-parent chromosomes. Chromosome pairing at meiosis was predominantly normal, which led to high pollen fertility, ranging from 66% to 77%. All hybrids were grown to full maturity and could be fertilized and set seed after self-pollination or back-crosses with B. napus. The morphology of the hybrids resembled characteristics from both parental species. An analysis of the fatty acid composition in the seeds of F1 plants was conducted and the seeds were found to contain different amounts of erucic acid, ranging from 11.0% to 52.1%.展开更多
文摘: Electrically induced protoplast fusion was used to produce somatic hybrids between Brassica napus L. and Sinapis alba L. Seven hybrids were obtained and verified by the simple sequence repeat and cleaved amplified polymorphic sequence analysis of the gene fael, indicating that the characteristic bands from S. alba were present in the hybrids. The hybridity was also confirmed by chromosome number counting because the hybrids possessed 62 chromosomes, corresponding to the sum of fusion-parent chromosomes. Chromosome pairing at meiosis was predominantly normal, which led to high pollen fertility, ranging from 66% to 77%. All hybrids were grown to full maturity and could be fertilized and set seed after self-pollination or back-crosses with B. napus. The morphology of the hybrids resembled characteristics from both parental species. An analysis of the fatty acid composition in the seeds of F1 plants was conducted and the seeds were found to contain different amounts of erucic acid, ranging from 11.0% to 52.1%.