期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
简化的Slope One在线评分预测算法 被引量:3
1
作者 孙丽梅 李悦 +1 位作者 ejike ifeanyi michael 曹科研 《计算机应用》 CSCD 北大核心 2018年第2期497-502,共6页
个性化推荐系统是大数据时代信息过滤的有效手段,影响推荐系统预测准确性的主要原因之一是数据稀疏性。Slope One评分预测推荐算法采用简单的线性回归模型解决数据稀疏问题,具有易于实现、评分预测速度快的特点,但它在训练阶段生成项目... 个性化推荐系统是大数据时代信息过滤的有效手段,影响推荐系统预测准确性的主要原因之一是数据稀疏性。Slope One评分预测推荐算法采用简单的线性回归模型解决数据稀疏问题,具有易于实现、评分预测速度快的特点,但它在训练阶段生成项目之间评分差的时间和空间消耗大,训练阶段需离线进行。为解决以上问题,提出一种简化的Slope One算法——Simplified Slope One,以两项目历史平均分之差代替项目评分差,来降低算法的时间复杂度和空间复杂度,简化耗时最多的生成项目之间评分差的过程,以有效提高评分数据的利用率,对稀疏数据有更好的适应性。在Movielens数据集上利用按照时间戳排序后划分的测试集进行实验,结果表明Simplified Slope One算法对评分预测的准确性与原Slope One算法接近,但时间复杂度和空间复杂度均低于原Slope One算法,更适合在数据规模增长迅速的大型推荐系统中应用。 展开更多
关键词 个性化推荐 SLOPE One算法 在线 评分预测 推荐系统
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部