期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Tracking perovskite crystallization via deep learning-based feature detection on 2D X-ray scattering data
1
作者 Vladimir Starostin Valentin Munteanu +6 位作者 Alessandro Greco ekaterina kneschaurek Alina Pleli Florian Bertram Alexander Gerlach Alexander Hinderhofer Frank Schreiber 《npj Computational Materials》 SCIE EI CSCD 2022年第1期951-959,共9页
Understanding the processes of perovskite crystallization is essential for improving the properties of organic solar cells.In situ real-time grazing-incidence X-ray diffraction(GIXD)is a key technique for this task,bu... Understanding the processes of perovskite crystallization is essential for improving the properties of organic solar cells.In situ real-time grazing-incidence X-ray diffraction(GIXD)is a key technique for this task,but it produces large amounts of data,frequently exceeding the capabilities of traditional data processing methods.We propose an automated pipeline for the analysis of GIXD images,based on the Faster Region-based Convolutional Network architecture for object detection,modified to conform to the specifics of the scattering data.The model exhibits high accuracy in detecting diffraction features on noisy patterns with various experimental artifacts.We demonstrate our method on real-time tracking of organic-inorganic perovskite structure crystallization and test it on two applications:1.the automated phase identification and unit-cell determination of two coexisting phases of Ruddlesden–Popper 2D perovskites,and 2.the fast tracking of MAPbI_(3)perovskite formation.By design,our approach is equally suitable for other crystalline thin-film materials. 展开更多
关键词 AUTOMATED CRYSTALLIZATION SCATTERING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部