This note concerns the problem of the robust stability of uncertain neutral systems with time-varying delay and saturating actuators. The system considered is continuous in time with norm bounded parametric uncertaint...This note concerns the problem of the robust stability of uncertain neutral systems with time-varying delay and saturating actuators. The system considered is continuous in time with norm bounded parametric uncertainties. By incorporating the free weighing matrix approach developed recently, some new delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) with some tuning parameters are obtained. An estimate of the domain of attraction of the closed-loop system under a priori designed controller is proposed. The approach is based on a polytopic description of the actuator saturation nonlinearities and the Lyapunov- Krasovskii method. Numerical examples are used to demonstrate the effectiveness of the proposed design method.展开更多
In this paper, the dynamic observer-based controller design for a class of neutral systems with H∞ control is considered. An observer-based output feedback is derived for systems with polytopic parameter uncertaintie...In this paper, the dynamic observer-based controller design for a class of neutral systems with H∞ control is considered. An observer-based output feedback is derived for systems with polytopic parameter uncertainties. This controller assures delay-dependent stabilization and H∞ norm bound attenuation from the disturbance input to the controlled output. Numerical examples are provided for illustration and comparison of the proposed conditions.展开更多
This paper discusses the delay-dependent exponential stability of a class of uncertain T-S fuzzy switched systems with time delay. The method is based on Lyapunov stability theorem and free weighting matrices approach...This paper discusses the delay-dependent exponential stability of a class of uncertain T-S fuzzy switched systems with time delay. The method is based on Lyapunov stability theorem and free weighting matrices approach. Two illustrative examples are given to demonstrate the effectiveness of the proposed method.展开更多
文摘This note concerns the problem of the robust stability of uncertain neutral systems with time-varying delay and saturating actuators. The system considered is continuous in time with norm bounded parametric uncertainties. By incorporating the free weighing matrix approach developed recently, some new delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) with some tuning parameters are obtained. An estimate of the domain of attraction of the closed-loop system under a priori designed controller is proposed. The approach is based on a polytopic description of the actuator saturation nonlinearities and the Lyapunov- Krasovskii method. Numerical examples are used to demonstrate the effectiveness of the proposed design method.
文摘In this paper, the dynamic observer-based controller design for a class of neutral systems with H∞ control is considered. An observer-based output feedback is derived for systems with polytopic parameter uncertainties. This controller assures delay-dependent stabilization and H∞ norm bound attenuation from the disturbance input to the controlled output. Numerical examples are provided for illustration and comparison of the proposed conditions.
文摘This paper discusses the delay-dependent exponential stability of a class of uncertain T-S fuzzy switched systems with time delay. The method is based on Lyapunov stability theorem and free weighting matrices approach. Two illustrative examples are given to demonstrate the effectiveness of the proposed method.