Joints of copper and stainless steels are used in a er ospace applications. Production of these joints by fusion welding faces many dif ficulties. This may be due to the differences in their physical, metallurgical a ...Joints of copper and stainless steels are used in a er ospace applications. Production of these joints by fusion welding faces many dif ficulties. This may be due to the differences in their physical, metallurgical a nd mechanical properties. Electron Beam Welding (EBW) process has been found to be especially well suited in this area. Selection of the appropriate welding par ameters needs thorough investigations. These parameters include: preheat tempera ture (℃), welding current (I w), focusing current (I F), welding spee d (V), height between the gun and workpiece surface (H), scan width (S w) and shift distance (S). The present work aims firstly, setting the pr oper welding conditions to get sound joint between commercially pure copper (C10 200) and AISI 316 stainless steel plates 8 mm thickness. Secondly, investigate t he effect of Electron Beam (EB) shift, single-sided and double-sided welds on the mechanical, metallurgical and chemical properties of the weld bead. Due to t he high difference in thermal conductivity between copper and stainless steel, E lectron Beam (EB) was shifted towards copper with different values. These values were ranged from 0.3 to 0.9 mm in welding without preheating of copper plate an d from 0.1 to 0.4 mm with preheating. Number of joints were welded using variabl e EBW parameters in view to obtain the sound weld bead. These parameters are as follows: gradual reduction I w=51 to 49 mA, I F=845 mA, V=8 mm/sec , H=130 mm, S w=500 μm and S=0.4 mm. The investigation has shown t hat, the copper (C10200) plate must be preheated to get sound welded joint with AISI 316 stainless steel using the EBW process. The tensile fracture in all wel ded samples occurred in copper plate away from the weld bead. This reflects that the weld bead tensile strength is greater than the copper strength. The EB shif t has slight effect on hardness distribution through weld bead. The hardness val ue (H v) reduces in gradual manner from stainless steel hardness to copper one. The EB shift distance has no significant effect on the impact toughness.展开更多
文摘Joints of copper and stainless steels are used in a er ospace applications. Production of these joints by fusion welding faces many dif ficulties. This may be due to the differences in their physical, metallurgical a nd mechanical properties. Electron Beam Welding (EBW) process has been found to be especially well suited in this area. Selection of the appropriate welding par ameters needs thorough investigations. These parameters include: preheat tempera ture (℃), welding current (I w), focusing current (I F), welding spee d (V), height between the gun and workpiece surface (H), scan width (S w) and shift distance (S). The present work aims firstly, setting the pr oper welding conditions to get sound joint between commercially pure copper (C10 200) and AISI 316 stainless steel plates 8 mm thickness. Secondly, investigate t he effect of Electron Beam (EB) shift, single-sided and double-sided welds on the mechanical, metallurgical and chemical properties of the weld bead. Due to t he high difference in thermal conductivity between copper and stainless steel, E lectron Beam (EB) was shifted towards copper with different values. These values were ranged from 0.3 to 0.9 mm in welding without preheating of copper plate an d from 0.1 to 0.4 mm with preheating. Number of joints were welded using variabl e EBW parameters in view to obtain the sound weld bead. These parameters are as follows: gradual reduction I w=51 to 49 mA, I F=845 mA, V=8 mm/sec , H=130 mm, S w=500 μm and S=0.4 mm. The investigation has shown t hat, the copper (C10200) plate must be preheated to get sound welded joint with AISI 316 stainless steel using the EBW process. The tensile fracture in all wel ded samples occurred in copper plate away from the weld bead. This reflects that the weld bead tensile strength is greater than the copper strength. The EB shif t has slight effect on hardness distribution through weld bead. The hardness val ue (H v) reduces in gradual manner from stainless steel hardness to copper one. The EB shift distance has no significant effect on the impact toughness.