The integral part of the optimal velocity car-following models is the optimal velocity function (OVF), which can be derived from measured velocity-spacing data. This paper discusses several characteristics of the OVF ...The integral part of the optimal velocity car-following models is the optimal velocity function (OVF), which can be derived from measured velocity-spacing data. This paper discusses several characteristics of the OVF and presents regression analysis on two classical datasets, the Lincoln and Holland tunnels, with different possible OVFs. The numerical simulation of the formation of traffic congestion is conducted with three different heuristic OVFs, demonstrating that these functions give results similar to those of the famous Bando OVF (Bando et al., 1995). Also an alternative method is present for determining the sensitivity and model parameters based on a single car driving to a fixed barrier.展开更多
文摘The integral part of the optimal velocity car-following models is the optimal velocity function (OVF), which can be derived from measured velocity-spacing data. This paper discusses several characteristics of the OVF and presents regression analysis on two classical datasets, the Lincoln and Holland tunnels, with different possible OVFs. The numerical simulation of the formation of traffic congestion is conducted with three different heuristic OVFs, demonstrating that these functions give results similar to those of the famous Bando OVF (Bando et al., 1995). Also an alternative method is present for determining the sensitivity and model parameters based on a single car driving to a fixed barrier.