期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Plasticity of photorespiratory carbon concentration mechanism in Sedobassia sedoides(Pall.)Freitag&G.Kadereit under elevated CO_(2)concentration and salinity
1
作者 Zulfira RAKHMANKULOVA elena shuyskaya +2 位作者 Maria PROKOFIEVA Kristina TODERICH Pavel VORONIN 《Journal of Arid Land》 SCIE CSCD 2024年第7期963-982,共20页
Rising atmospheric CO_(2)(carbon dioxide)concentrations and salinization are manifestations of climate change that affect plant growth and productivity.Species with an intermediate C_(3)-C_(4)type of photosynthesis li... Rising atmospheric CO_(2)(carbon dioxide)concentrations and salinization are manifestations of climate change that affect plant growth and productivity.Species with an intermediate C_(3)-C_(4)type of photosynthesis live in a wide range of precipitation,temperature,and soil quality,but are more often found in warm and dry habitats.One of the intermediate C_(3)-C_(4)photosynthetic type is C_(2)photosynthesis with a carbon concentration mechanism(CCM)that reassimilates CO_(2)released via photorespiration.However,the ecological significance under which C_(2)photosynthesis has advantages over C_(3)and C_(4)plants remains largely unexplored.Salt tolerance and functioning of CCM were studied in plants from two populations(P1 and P2)of Sedobassia sedoides(Pall.)Freitag&G.Kadereit Asch.species with C_(2)photosynthesis exposed to 4 d and 10 d salinity(200 mM NaCl)at ambient(785.7 mg/m^(3),aCO_(2)and elevated(1571.4 mg/m^(3),eCO_(2))CO_(2).On the fourth day of salinity,an increase in Na+content,activity catalase,and superoxide dismutase was observed in both populations.P2 plants showed an increase in proline content and a decrease in photosynthetic enzyme content:rubisco,phosphoenolpyruvate carboxylase(PEPC),and glycine decarboxylase(GDC),which indicated a weakening of C_(2)and C_(4)characteristics under salinity.Treatment under 10 d salinity led to an increased Na^(+)content and activity of cyclic electron flow around photosystem I(PSI CEF),a decreased content of K^(+)and GDC in both populations.P1 plants showed greater salt tolerance,which was assessed by the degree of reduction in photosynthetic enzyme content,PSI CEF activity,and changes in relative growth rate(RGR).Differences between populations were evident under the combination of eCO_(2)and salinity.Under long-term salinity and eCO_(2),more salt-tolerant P1 plants had a higher dry biomass(DW),which was positively correlated with PSI CEF activity.In less salt-tolerant P2 plants,DW correlated with transpiration and dark respiration.Thus,S.sedoides showed a high degree of photosynthetic plasticity under the influence of salinity and eCO_(2)through strengthening(P1 plants)and weakening C_(4)characteristics(P2 plants). 展开更多
关键词 photosystemsⅠandⅡ carbon-concentrating mechanism glycine decarboxylase RUBISCO phosphoenolpyruvate carboxylase(PEPC) cyclic electron flow salinity stress DRYLANDS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部