Monodispersed spherical CdS nanoparticles embedded into polyvinyl alcohol (PVA) films are synthesized by using an in-situ gamma-irradiation-induced method. The formation mechanism of CdS nanoparticles capped by two un...Monodispersed spherical CdS nanoparticles embedded into polyvinyl alcohol (PVA) films are synthesized by using an in-situ gamma-irradiation-induced method. The formation mechanism of CdS nanoparticles capped by two united cells of PVA is purposed by means of surrounding the CdS nanoparticles with OH bonds of the PVA chain. CdS nanoparticles are found to possess an unusual orthorhombic structure in monoclinic crystalline PVA. The polymer matrix affords protection from agglomeration and controls the particle size. It is found that the distribution of the prepared nanoparticles increases and a narrower size distribution is observed when the gamma radiation is varied from 10 to 50 kGy. While the average size of the nanoparticles is found to be less affected by the variation of the gamma radiation doses. The size range of the synthesized nanoparticles is 14±1 nm. The optical absorption spectra of synthesized CdS nanoparticles in a polymer matrix reveal the blue shift in the band gap energy with respect to CdS bulk materials owing to quantum confinement effect. The photoluminescence study of nanocomposite films shows the green emission arising from the crystalline defects.展开更多
The rate of elapsed polymerization of polyhydroxyethylacrylate in gelatin has been studied to investigate the effect of co-monomers consumption at a given dose. The polymer gel dosimeters consisted of 2%~4% N,N-methy...The rate of elapsed polymerization of polyhydroxyethylacrylate in gelatin has been studied to investigate the effect of co-monomers consumption at a given dose. The polymer gel dosimeters consisted of 2%~4% N,N-methyelene-bis-acrylamide cross-linker,2%~4% 2-hydroxyethylacrylate monomer and gelatin at 3% and 5%. The dosimeters were irradiated by using 60Co teletherapy γ-ray source up to 20 Gy at a constant dose rate. The relaxation rate of water proton in the dosimeters at different doses and co-monomer concentrations were measured using a nuclear magnetic resonance spectroscopy. The rate of elapsed polymerization decreases with increasing the dose and the initial concentration of co-monomers. The rate of consumption of co-monomers increases with an increase of the polymerization and the gelatin content of the polymer gel.展开更多
Cubic structured nickel-zinc ferrite nanoparticles (Ni0.25Zn0.75Fe2O4) have been synthesized by thermal treatment method. In this procedure, an aqueous solution containing metal nitrates as precursors, polyvinyl pyrro...Cubic structured nickel-zinc ferrite nanoparticles (Ni0.25Zn0.75Fe2O4) have been synthesized by thermal treatment method. In this procedure, an aqueous solution containing metal nitrates as precursors, polyvinyl pyrrolidone as a capping agent, and deionized water as a solvent were thoroughly stirred, dried at 353 K for 24 h, and crushed into powder before calcination to remove organic matters and crystallize the particles. The structure and particle size were characterized by X-ray powder diffraction and transmission electron microscopy. The average particle size increased from 7 to 25 nm with increase of calcination temperature from 723 to 873 K respectively. The magnetic properties were determined by vibrating sample magnetometer and electron paramagnetic resonance electron paramagnetic resonance at room temperature. By increasing the calcinations temperatures from 723 to 873 K it showed an increase of the magnetization saturation from 11 to 26 emu/g and the g-factor from 2.0670 to 2.1220. The Fourier transform infrared spectroscopy was used to confirm the presence of metal oxide bands at all temperatures and the removal of organic matters at 873 K.展开更多
文摘Monodispersed spherical CdS nanoparticles embedded into polyvinyl alcohol (PVA) films are synthesized by using an in-situ gamma-irradiation-induced method. The formation mechanism of CdS nanoparticles capped by two united cells of PVA is purposed by means of surrounding the CdS nanoparticles with OH bonds of the PVA chain. CdS nanoparticles are found to possess an unusual orthorhombic structure in monoclinic crystalline PVA. The polymer matrix affords protection from agglomeration and controls the particle size. It is found that the distribution of the prepared nanoparticles increases and a narrower size distribution is observed when the gamma radiation is varied from 10 to 50 kGy. While the average size of the nanoparticles is found to be less affected by the variation of the gamma radiation doses. The size range of the synthesized nanoparticles is 14±1 nm. The optical absorption spectra of synthesized CdS nanoparticles in a polymer matrix reveal the blue shift in the band gap energy with respect to CdS bulk materials owing to quantum confinement effect. The photoluminescence study of nanocomposite films shows the green emission arising from the crystalline defects.
文摘The rate of elapsed polymerization of polyhydroxyethylacrylate in gelatin has been studied to investigate the effect of co-monomers consumption at a given dose. The polymer gel dosimeters consisted of 2%~4% N,N-methyelene-bis-acrylamide cross-linker,2%~4% 2-hydroxyethylacrylate monomer and gelatin at 3% and 5%. The dosimeters were irradiated by using 60Co teletherapy γ-ray source up to 20 Gy at a constant dose rate. The relaxation rate of water proton in the dosimeters at different doses and co-monomer concentrations were measured using a nuclear magnetic resonance spectroscopy. The rate of elapsed polymerization decreases with increasing the dose and the initial concentration of co-monomers. The rate of consumption of co-monomers increases with an increase of the polymerization and the gelatin content of the polymer gel.
文摘Cubic structured nickel-zinc ferrite nanoparticles (Ni0.25Zn0.75Fe2O4) have been synthesized by thermal treatment method. In this procedure, an aqueous solution containing metal nitrates as precursors, polyvinyl pyrrolidone as a capping agent, and deionized water as a solvent were thoroughly stirred, dried at 353 K for 24 h, and crushed into powder before calcination to remove organic matters and crystallize the particles. The structure and particle size were characterized by X-ray powder diffraction and transmission electron microscopy. The average particle size increased from 7 to 25 nm with increase of calcination temperature from 723 to 873 K respectively. The magnetic properties were determined by vibrating sample magnetometer and electron paramagnetic resonance electron paramagnetic resonance at room temperature. By increasing the calcinations temperatures from 723 to 873 K it showed an increase of the magnetization saturation from 11 to 26 emu/g and the g-factor from 2.0670 to 2.1220. The Fourier transform infrared spectroscopy was used to confirm the presence of metal oxide bands at all temperatures and the removal of organic matters at 873 K.