Protein powders from Eisenia foetida were prepared using different drying processes and fractionation. Differential scanning calorimetry was used to show that heat denaturation occurred during the drying process above...Protein powders from Eisenia foetida were prepared using different drying processes and fractionation. Differential scanning calorimetry was used to show that heat denaturation occurred during the drying process above 42°C. Protein solubility was also studied. The addition of dissociating reagents allowed concluding that solubility was decreased during oven drying due to thermo denaturation including hydrogen bonds. The volatile compounds of the different powders were extracted by solid phase micro-extraction and identified by mass spectrometry. Volatile compounds were related to lipid oxidation and Maillard reactions occurring during the preparation of the powders. High drying temperatures led to more volatile compounds resulting from Maillard reactions. In the protein powder preparation process, a fractionation step led to a “pulp fraction” and a “juice fraction” of earthworms. The “pulp fraction” contained less odorant volatile compounds resulting from Maillard reactions than the “juice fraction” did.展开更多
文摘Protein powders from Eisenia foetida were prepared using different drying processes and fractionation. Differential scanning calorimetry was used to show that heat denaturation occurred during the drying process above 42°C. Protein solubility was also studied. The addition of dissociating reagents allowed concluding that solubility was decreased during oven drying due to thermo denaturation including hydrogen bonds. The volatile compounds of the different powders were extracted by solid phase micro-extraction and identified by mass spectrometry. Volatile compounds were related to lipid oxidation and Maillard reactions occurring during the preparation of the powders. High drying temperatures led to more volatile compounds resulting from Maillard reactions. In the protein powder preparation process, a fractionation step led to a “pulp fraction” and a “juice fraction” of earthworms. The “pulp fraction” contained less odorant volatile compounds resulting from Maillard reactions than the “juice fraction” did.