The effects of substitution of Sn for Co on the microstructure, hydrogen storage and electrochemical discharge capacity of La0.7Mg0.3Al0.3Mn0.4Co0.5-xSnxNi3.8 (x=0, 0.1, 0.2, 0.3 and 0.5) alloys were investigated us...The effects of substitution of Sn for Co on the microstructure, hydrogen storage and electrochemical discharge capacity of La0.7Mg0.3Al0.3Mn0.4Co0.5-xSnxNi3.8 (x=0, 0.1, 0.2, 0.3 and 0.5) alloys were investigated using X-ray diffraction (XRD), pressure composition isotherm (PCT) and electrochemical discharge cycle. XRD, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) tests showed that all of alloys are mainly composed of LaNi5 and MgNi2 phases, but when increasing the content of Sn in alloys, the LaNiSn phase appears and microstructure is refined. The PCT showed that increasing substitution of Sn for Co results in decrease of the maximum hydrogen storage capacity from 1.48% (x=0) to 0.85% (x=0.5). The electrochemical tests indicated that the maximum discharge capacity decreases from 337.1 mA-h/g (x=0) to 239.8 mA.h/g (x=0.5); however, the discharge capacity retention at the 100th cycle increases from 70.2% (x=0) to 78.0% (x=0.5).展开更多
基金Institute for Superconducting and Electronic Materials (ISEM)University of Wollongong and Institute Nuclear and Energy Research (IPEN)+2 种基金University of Sao Paulo for the financial supportNational Council for Scientific and Technological Development – CNPQ – Brazil for the scholarshipsfinancial support (CNPQ 472504/2010-0) granted to Julio Cesar Serafim CASINI
文摘The effects of substitution of Sn for Co on the microstructure, hydrogen storage and electrochemical discharge capacity of La0.7Mg0.3Al0.3Mn0.4Co0.5-xSnxNi3.8 (x=0, 0.1, 0.2, 0.3 and 0.5) alloys were investigated using X-ray diffraction (XRD), pressure composition isotherm (PCT) and electrochemical discharge cycle. XRD, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) tests showed that all of alloys are mainly composed of LaNi5 and MgNi2 phases, but when increasing the content of Sn in alloys, the LaNiSn phase appears and microstructure is refined. The PCT showed that increasing substitution of Sn for Co results in decrease of the maximum hydrogen storage capacity from 1.48% (x=0) to 0.85% (x=0.5). The electrochemical tests indicated that the maximum discharge capacity decreases from 337.1 mA-h/g (x=0) to 239.8 mA.h/g (x=0.5); however, the discharge capacity retention at the 100th cycle increases from 70.2% (x=0) to 78.0% (x=0.5).