Apolipoprotein A-IMilano(ApoA-IM)has been shown to significantly reduce coronary atherosclerotic plaques.However,the preparation of cost-effective pharmaceutical formulations of ApoA-IM is limited by the high cost and...Apolipoprotein A-IMilano(ApoA-IM)has been shown to significantly reduce coronary atherosclerotic plaques.However,the preparation of cost-effective pharmaceutical formulations of ApoA-IM is limited by the high cost and difficulty of purifying the protein and producing the highly effective dimeric form.The aim of this study was to create an expression cassette that specifically drives the expression of dimeric ApoA-IM in the protein bodies of rice seeds.The ApoA-IM protein under control of the 13 kDa prolamin promoter is expressed exclusively in its dimeric form within the seeds,and immunocytochemical and immunogold analyses confirmed its expression in different caryopsis tissue such as seed coat,aleurone cell and endosperm,particularly in amyloplast and storage vacuoles.A plant-based ApoA-IM production system offered numerous advantages over current production systems,including the direct production of the most therapeutically effective dimeric ApoA-IM forms,long-term protein storage in seeds,and ease of protein production by simply growing plants.Therefore,seeds had the potential to serve as a costeffective source of therapeutic ApoA-IM.展开更多
Polarized organization of the cytoplasm of growing pollen tubes is maintained by coordinated function of actin filaments (AFs) and microtubules (MTs). AFs convey post-Golgi secretory vesicles to the tip where some...Polarized organization of the cytoplasm of growing pollen tubes is maintained by coordinated function of actin filaments (AFs) and microtubules (MTs). AFs convey post-Golgi secretory vesicles to the tip where some fuse with specific domains of the plasma membrane (PM). Secretory activity is balanced by PM retrieval that maintains cell mem- brane economy and regulates the polarized composition of the PM, by dividing lipids/proteins between the shank and the tip. Although AFs play a key role in PM internalization in the shank, the role of MTs in exo-endocytosis needs to be characterized. The present results show that integrity of the MT cytoskeleton is necessary to control exo-endocytosis events in the tip. MT polymerization plays a role in promoting PM invagination in the apex of tobacco pollen tubes since nocodazole affected PM internalization in the tip and subsequent migration of endocytic vesicles from the apex for degradation. MT depolymerization in the apex and shank was associated with misallocation of a significantly greater amount of internalized PM to the Golgi apparatus and its early recycling to the secretory pathway. Fluorescence Recovery After Photobleaching (FRAP) experiments also showed that MT depolymerization in the tip region influenced the rate of exocytosis in the central domain of the apical PM.展开更多
文摘Apolipoprotein A-IMilano(ApoA-IM)has been shown to significantly reduce coronary atherosclerotic plaques.However,the preparation of cost-effective pharmaceutical formulations of ApoA-IM is limited by the high cost and difficulty of purifying the protein and producing the highly effective dimeric form.The aim of this study was to create an expression cassette that specifically drives the expression of dimeric ApoA-IM in the protein bodies of rice seeds.The ApoA-IM protein under control of the 13 kDa prolamin promoter is expressed exclusively in its dimeric form within the seeds,and immunocytochemical and immunogold analyses confirmed its expression in different caryopsis tissue such as seed coat,aleurone cell and endosperm,particularly in amyloplast and storage vacuoles.A plant-based ApoA-IM production system offered numerous advantages over current production systems,including the direct production of the most therapeutically effective dimeric ApoA-IM forms,long-term protein storage in seeds,and ease of protein production by simply growing plants.Therefore,seeds had the potential to serve as a costeffective source of therapeutic ApoA-IM.
文摘Polarized organization of the cytoplasm of growing pollen tubes is maintained by coordinated function of actin filaments (AFs) and microtubules (MTs). AFs convey post-Golgi secretory vesicles to the tip where some fuse with specific domains of the plasma membrane (PM). Secretory activity is balanced by PM retrieval that maintains cell mem- brane economy and regulates the polarized composition of the PM, by dividing lipids/proteins between the shank and the tip. Although AFs play a key role in PM internalization in the shank, the role of MTs in exo-endocytosis needs to be characterized. The present results show that integrity of the MT cytoskeleton is necessary to control exo-endocytosis events in the tip. MT polymerization plays a role in promoting PM invagination in the apex of tobacco pollen tubes since nocodazole affected PM internalization in the tip and subsequent migration of endocytic vesicles from the apex for degradation. MT depolymerization in the apex and shank was associated with misallocation of a significantly greater amount of internalized PM to the Golgi apparatus and its early recycling to the secretory pathway. Fluorescence Recovery After Photobleaching (FRAP) experiments also showed that MT depolymerization in the tip region influenced the rate of exocytosis in the central domain of the apical PM.