AIM: To present an approach for selectively killing retrovirus-infected cells that combines the toxicity of Pseudomonas exotoxin (PE) and the presence of reverse transcriptase (RT) in infected cells. METHODS: PE antis...AIM: To present an approach for selectively killing retrovirus-infected cells that combines the toxicity of Pseudomonas exotoxin (PE) and the presence of reverse transcriptase (RT) in infected cells. METHODS: PE antisense toxin RNA has palindromic stem loops at its 5' and 3' ends enabling self-primed generation of cDNA in the presence of RT. The RT activity expressed in retrovirus-infected cells converts "antisense-toxin-RNA" into a lethal toxin gene exclusively in these cells. RESULTS: Using cotransfection studies with PE-expressing RNAs and β-gal expressing reporter plasmids, we show that, in HepG2 and HepG2.2.15 hepatoma cells as well as in duck hepatitis B virus (DHBV) infected cells, HBV or DHBV-polymerase reverse transcribe a lethal cDNA copy of an antisense toxin RNA, which is composed of sequences complementary to a PE gene and eukaryotic transcription and translation signals. CONCLUSION: This finding may have important implications as a novel therapeutic strategy aimed at the elimination of HBV infection.展开更多
文摘AIM: To present an approach for selectively killing retrovirus-infected cells that combines the toxicity of Pseudomonas exotoxin (PE) and the presence of reverse transcriptase (RT) in infected cells. METHODS: PE antisense toxin RNA has palindromic stem loops at its 5' and 3' ends enabling self-primed generation of cDNA in the presence of RT. The RT activity expressed in retrovirus-infected cells converts "antisense-toxin-RNA" into a lethal toxin gene exclusively in these cells. RESULTS: Using cotransfection studies with PE-expressing RNAs and β-gal expressing reporter plasmids, we show that, in HepG2 and HepG2.2.15 hepatoma cells as well as in duck hepatitis B virus (DHBV) infected cells, HBV or DHBV-polymerase reverse transcribe a lethal cDNA copy of an antisense toxin RNA, which is composed of sequences complementary to a PE gene and eukaryotic transcription and translation signals. CONCLUSION: This finding may have important implications as a novel therapeutic strategy aimed at the elimination of HBV infection.