期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Expression, Imprinting, and Evolution of Rice Homologs of the Polycomb Group Genes 被引量:25
1
作者 Ming Luo Damien Platten +2 位作者 Abed Chaudhury W.J. Peacock elizabeth s. dennis 《Molecular Plant》 SCIE CAS CSCD 2009年第4期711-723,共13页
Polycomb group proteins (PcG) play important roles in epigenetic regulation of gene expression. Some core PeG proteins, such as Enhancer of Zeste (E(z)), Suppressor of Zeste (12) (Su(z)12), and Extra Sex C... Polycomb group proteins (PcG) play important roles in epigenetic regulation of gene expression. Some core PeG proteins, such as Enhancer of Zeste (E(z)), Suppressor of Zeste (12) (Su(z)12), and Extra Sex Combs (ESC), are conserved in plants. The rice genome contains two E(z)-Iike genes, OsiEZ1 and OsCLF, two homologs of Su(z)12, OsEMF2a and OsEMF2b, and two ESC-like genes, OsFIE1 and OsFIE2. OsFIE1 is expressed only in endosperm; the maternal copy is expressed while the paternal copy is not active. Other rice PcG genes are expressed in a wide range of tissues and are not imprinted in the endosperm. The two E(z)-Iike genes appear to have duplicated before the separation of the dicots and monocots; the two homologs of Su(z)12 possibly duplicated during the evolution of the Gramineae and the two ESC- like genes are likely to have duplicated in the ancestor of the grasses. No homologs of the Arabidopsis seed-expressed PcG genes MEA and FIS2 were identified in the rice genome. We have isolated T-DNA insertion lines in the rice homologs of three PcG genes. There is no autonomous endosperm development in these T-DNA insertion lines. One line with a T-DNA insertion in OsEMF2b displays pleiotropic phenotypes including altered flowering time and abnormal flower organs, suggesting important roles in rice development for this gene. 展开更多
关键词 Polycomb group protein pseudograin IMPRINTING development EVOLUTION panicle.
原文传递
Histone Acetylation, VERNALIZATION INSENSITIVE 3, FLOWERING LOCUS C, and the Vernalization Response 被引量:8
2
作者 Donna M. Bond elizabeth s. dennis +1 位作者 Barry J. Pogson E. Jean Finnegan 《Molecular Plant》 SCIE CAS CSCD 2009年第4期724-737,共14页
The quantitative induction of VIN3 by low temperatures is required for PRC2 repression of FLC and promotion of flowering (vernalization) in Arabidopsis. Histone acetylation, a chromatin modification commonly associa... The quantitative induction of VIN3 by low temperatures is required for PRC2 repression of FLC and promotion of flowering (vernalization) in Arabidopsis. Histone acetylation, a chromatin modification commonly associated with gene transcription, increased on VIN3 chromatin in two spatially and temporally distinct phases in response to low temperatures. During short-term cold exposure, histone H3 acetylation at the transcription start site rapidly increased, implying that it is required for VlN3 induction. Subsequent changes in histone H3 and H4 acetylation occurred following continued VIN3 transcription during prolonged cold exposure. Members of the SAGA-like transcriptional adaptor complex, including the histone acetyltransferase GCNS, which induces expression of the cold acclimation pathway genes, do not regulate VlN3 induction during cold exposure, indicating that the cold acclimation pathway and the cold-induction of VlN3 are regulated by different transcriptional mechanisms. Mutations in the other 11 histone acetyltransferase genes did not affect VlN3 induction. However, nicotinamide, a histone deacetyiase inhibitor, induced VIN3 and altered histone acetylation at the VIN3 locus. VIN3 induction was proportional to the length of nicotinamide treatment, which was associated with an early-flowering phenotype and repression of FLC. However, unlike vernalization, the repression of FLC was independent of VIN3 activity. Nicotinamide treatment did not cause a change in the expression of any genes in the autonomous pathway or members of the PRC2 complex, the well characterized repressors of FLC. Our data suggest that FLC is repressed via a novel pathway involving the SIR2 class of histone deacetylases. 展开更多
关键词 Cold acclimation histone acetyltransferase histone deacetylase SIR2 nicotinamide.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部