期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Relationship of Grain Fructan Content to Degree of Polymerisation in Different Barleys 被引量:1
1
作者 Csilla Nemeth Annica A.M.Andersson +3 位作者 Roger Andersson elke mangelsen Chuanxin Sun Per Aman 《Food and Nutrition Sciences》 2014年第6期581-589,共9页
Fructans are important in the survival of plants and also valuable for humans as potentially health promoting food ingredients. In this study fructan content and composition were determined in grains of 20 barley bree... Fructans are important in the survival of plants and also valuable for humans as potentially health promoting food ingredients. In this study fructan content and composition were determined in grains of 20 barley breeding lines and cultivars with a wide variation in chemical composition, morphology and country of origin, grown at one site in Chile. There was significant genotypic variation in grain fructan content ranging from 0.9% to 4.2% of grain dry weight. Fructan degree of polymerisation (DP) was analysed using high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Changes in the distribution of different chain lengths and the pattern of structures of fructan were detected with increasing amount of fructan in the different barleys. A positive correlation was found between fructan content and the relative amount of long chain fructan (DP > 9) (r = 0.54, p = 0.021). Our results provide a basis for selecting promising barley lines and cultivars for further research on fructan in barley breeding with the aim to produce healthy food products. 展开更多
关键词 FRUCTAN BARLEY Hordeum vulgare L.
下载PDF
Transcriptome Analysis of High-Temperature Stress in Developing Barley Caryopses: Early Stress Responses and Effects on Storage Compound Biosynthesis 被引量:6
2
作者 elke mangelsen Joachim Kilian +3 位作者 Klaus Harter Christer Jansson Dierk Wanke Eva Sundberg 《Molecular Plant》 SCIE CAS CSCD 2011年第1期97-115,共19页
High-temperature stress, like any abiotic stress, impairs the physiology and development of plants, including the stages of seed setting and ripening. We used the Affymetrix 22K Barley1 GeneChip microarray to investig... High-temperature stress, like any abiotic stress, impairs the physiology and development of plants, including the stages of seed setting and ripening. We used the Affymetrix 22K Barley1 GeneChip microarray to investigate the response of developing barley (Hordeum vulgare) seeds, termed caryopses, after 0.5, 3, and 6 h of heat stress exposure; 958 induced and 1122 repressed genes exhibited spatial and temporal expression patterns that provide a detailed insight into the caryopses' early heat stress responses. Down-regulation of genes related to storage compound biosynthesis and cell growth provides evidence for a rapid impairment of the caryopsis' development. Increased levels of sugars and amino acids were indicative for both production of compatible solutes and feedback-induced accumulation of substrates for storage compound biosynthesis. Metadata analysis identified embryo and endosperm as primary locations of heat stress responses, indicating a strong impact of short-term heat stress on central developmental functions of the caryopsis. A comparison with heat stress responses in Arabidopsis shoots and drought stress responses in barley caryopses identified both conserved and presumably heat- and caryopsis-specific stress-responsive genes. Summarized, our data provide an important basis for further investigation of gene functions in order to aid an improved heat tolerance and reduced losses of yield in barley as a model for cereal crops. 展开更多
关键词 Abiotic/environmental stress gene expression transcriptome analysis seed biology BARLEY CARYOPSIS CROPS heat shock.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部