<span style="font-family:Verdana;">A series of colossal magneto resistance (CMR) materials with compositional formula Pr</span><sub><span style="font-family:Verdana;">0.5<...<span style="font-family:Verdana;">A series of colossal magneto resistance (CMR) materials with compositional formula Pr</span><sub><span style="font-family:Verdana;">0.5</span></sub><span style="font-family:Verdana;">Sr</span><sub><span style="font-family:Verdana;">0.5</span></sub><span style="font-family:Verdana;">Mn</span><sub><span style="font-family:Verdana;">1-x</span></sub><span style="font-family:Verdana;">Cr</span><sub><span style="font-family:Verdana;">x</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> (x = 0, 0.1, 0.2, 0.3, 0.4) were prepared by sol-gel technique using pure metal nitrates as the starting materials. These samples were characterized structurally by X-ray diffraction, FTIR and SEM. All the </span><span style="font-family:Verdana;">samples exhibit orthorhombic structure without any detectable impurities.</span><span style="font-family:Verdana;"> The bulk den</span><span></span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">sities for all the compositions were measured from the pellets. The Young’s and Rigidity moduli, Poisson’s ratio and Debye temperature of all the compositions were calculated with the experimentally measured ultra</span><span style="font-family:Verdana;">sonic longitudinal and shear velocities at room temperature using pulse</span><span style="font-family:Verdana;"> transmission technique. As the materials are porous, zero porous elastic moduli have also been calculated using a well-known Hasselmann and Fulrath model. </span><span style="font-family:Verdana;">The observed variation of elastic moduli with varying chromium doping</span><span style="font-family:Verdana;"> concentration has been studied qualitatively.</span></span></span>展开更多
文摘<span style="font-family:Verdana;">A series of colossal magneto resistance (CMR) materials with compositional formula Pr</span><sub><span style="font-family:Verdana;">0.5</span></sub><span style="font-family:Verdana;">Sr</span><sub><span style="font-family:Verdana;">0.5</span></sub><span style="font-family:Verdana;">Mn</span><sub><span style="font-family:Verdana;">1-x</span></sub><span style="font-family:Verdana;">Cr</span><sub><span style="font-family:Verdana;">x</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> (x = 0, 0.1, 0.2, 0.3, 0.4) were prepared by sol-gel technique using pure metal nitrates as the starting materials. These samples were characterized structurally by X-ray diffraction, FTIR and SEM. All the </span><span style="font-family:Verdana;">samples exhibit orthorhombic structure without any detectable impurities.</span><span style="font-family:Verdana;"> The bulk den</span><span></span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">sities for all the compositions were measured from the pellets. The Young’s and Rigidity moduli, Poisson’s ratio and Debye temperature of all the compositions were calculated with the experimentally measured ultra</span><span style="font-family:Verdana;">sonic longitudinal and shear velocities at room temperature using pulse</span><span style="font-family:Verdana;"> transmission technique. As the materials are porous, zero porous elastic moduli have also been calculated using a well-known Hasselmann and Fulrath model. </span><span style="font-family:Verdana;">The observed variation of elastic moduli with varying chromium doping</span><span style="font-family:Verdana;"> concentration has been studied qualitatively.</span></span></span>