期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Characteristics of Biopellets Manufactured from Various Lignocellulosic Feedstocks as Alternative Renewable Energy Sources
1
作者 Anggara Ridho Putra Apri Heri Iswanto +7 位作者 Arif Nuryawan Saptadi Darmawan elvarawindra madyaratri Widya Fatriasari Lee Seng Hua Petar Antov Harisyah Manurung Ade Pera Amydha Sudrajat Herawati Pendi 《Journal of Renewable Materials》 EI CAS 2024年第6期1103-1123,共21页
The increased valorization of renewable and cost-effective lignocellulosic feedstocks represents a viable,sustainable,and eco-friendly approach toward the production of biopellets as alternative energy sources.The aim... The increased valorization of renewable and cost-effective lignocellulosic feedstocks represents a viable,sustainable,and eco-friendly approach toward the production of biopellets as alternative energy sources.The aim of this research work was to investigate and evaluate the feasibility of using various lignocellulosic raw materials,i.e.,raru(Cotylelobium melanoxylon),mangrove(Rhizophora spp.),sengon(Paraserianthes falcataria),kemenyan toba(Styrax sumatrana),oil palm(Elaeis guineensis),manau rattan(Calamus manan),and belangke bamboo(Gigantochloa pruriens)for manufacturing biopellets with different particle sizes.The raw materials used were tested for their moisture content,specific gravity,ash,cellulose,and lignin content.In addition,thermal analyses,i.e.,calorific values,thermogravimetric analysis(TGA),and differential scanning calorimetry(DSC),were performed.The following properties of the biopellets produced were investigated:moisture content,volatile matter,ash content,fixed carbon,density,and thermal analyses.Based on an analysis of the raw materials,raru had the lowest moisture content(12%)and ash content(1.5%)and the highest specific gravity(1.2).Markedly,palm oil stem had the highestα-cellulose(55%)and lignin(37%)content.In accordance with the SNI 8675:2018 standard requirements,biopellets with optimal properties(moisture content of 1.4%,ash content of 0.79%,density of 1.09 g/m^(3),calorific value of 4672 cal/g,and TGA residue of 13.9%),were manufactured from raru wood. 展开更多
关键词 BIOMASS biopellet renewable energy particle size
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部