The current investigation examines the fractional forced Korteweg-de Vries(FF-KdV) equation,a critically significant evolution equation in various nonlinear branches of science. The equation in question and other asso...The current investigation examines the fractional forced Korteweg-de Vries(FF-KdV) equation,a critically significant evolution equation in various nonlinear branches of science. The equation in question and other associated equations are widely acknowledged for their broad applicability and potential for simulating a wide range of nonlinear phenomena in fluid physics, plasma physics, and various scientific domains. Consequently, the main goal of this study is to use the Yang homotopy perturbation method and the Yang transform decomposition method, along with the Caputo operator for analyzing the FF-KdV equation. The derived approximations are numerically examined and discussed. Our study will show that the two suggested methods are helpful, easy to use, and essential for looking at different nonlinear models that affect complex processes.展开更多
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R229), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia。
文摘The current investigation examines the fractional forced Korteweg-de Vries(FF-KdV) equation,a critically significant evolution equation in various nonlinear branches of science. The equation in question and other associated equations are widely acknowledged for their broad applicability and potential for simulating a wide range of nonlinear phenomena in fluid physics, plasma physics, and various scientific domains. Consequently, the main goal of this study is to use the Yang homotopy perturbation method and the Yang transform decomposition method, along with the Caputo operator for analyzing the FF-KdV equation. The derived approximations are numerically examined and discussed. Our study will show that the two suggested methods are helpful, easy to use, and essential for looking at different nonlinear models that affect complex processes.