There are many techniques for hazard identification and are divided into shortcut,standard and advanced techniques.Among these,HAZOP and What-If techniques are mostly engaged by practitioners in the chemical process i...There are many techniques for hazard identification and are divided into shortcut,standard and advanced techniques.Among these,HAZOP and What-If techniques are mostly engaged by practitioners in the chemical process industry.Both of these have certain advantages and limitations,i.e.,HAZOP is structured,and what-if covers broad range of scenarios.There is no hazard identification method,which can cover a broad range of scenarios and is structured in nature.For this purpose,a new technique namely integrated hazard identification(IHI)is proposed in this article that integrates HAZOP and What-If.The methodology is demonstrated via hazard identification study of urea synthesis section.Risk ranking is used to sort out the worst-case scenario.This worst-case scenario is further studied in detail for quantification that is performed using the ALOHA software.This quantification has assisted to detect ammonia concentrations in nearby control room and surroundings for worst-case scenario.It is revealed that if ammonia pump is not stopped within 10 minutes,concentration inside and outside the control room may reach to 384 ppm and 2630 ppm,compared to 1100 ppm(AEGL-3).Thus the proposed method would be easy,time saving and covers more details and would be handy for practicing engineers working in different chemical process industries.展开更多
Cement industry is an intensive source of fuel consumption and greenhouse gases(GHGs) emissions. This industry is responsible for 5% of GHGs emissions and is among the top industrial sources of carbon dioxide(CO_(2)) ...Cement industry is an intensive source of fuel consumption and greenhouse gases(GHGs) emissions. This industry is responsible for 5% of GHGs emissions and is among the top industrial sources of carbon dioxide(CO_(2)) emissions. Therefore, CO_(2) emissions reduction from cement production process has been always an appealing subject for researches in universities and industry. Various efforts have been carried out to mitigate the huge mass of CO_(2) emissions from the cement industry. Although, majority of these strategies are technically viable, due to various barriers, the level of CO_(2) mitigation in cement industry is still not satisfactory. Among numerous researches on this topic, only a few have tried to answer why CO_(2) abatement strategies are not globally practiced yet. This work aims to highlight the challenges and barriers against widespread and effective implementation of CO_(2) mitigation strategies in the cement industry and to propose practical solutions to overcome such barriers.展开更多
文摘There are many techniques for hazard identification and are divided into shortcut,standard and advanced techniques.Among these,HAZOP and What-If techniques are mostly engaged by practitioners in the chemical process industry.Both of these have certain advantages and limitations,i.e.,HAZOP is structured,and what-if covers broad range of scenarios.There is no hazard identification method,which can cover a broad range of scenarios and is structured in nature.For this purpose,a new technique namely integrated hazard identification(IHI)is proposed in this article that integrates HAZOP and What-If.The methodology is demonstrated via hazard identification study of urea synthesis section.Risk ranking is used to sort out the worst-case scenario.This worst-case scenario is further studied in detail for quantification that is performed using the ALOHA software.This quantification has assisted to detect ammonia concentrations in nearby control room and surroundings for worst-case scenario.It is revealed that if ammonia pump is not stopped within 10 minutes,concentration inside and outside the control room may reach to 384 ppm and 2630 ppm,compared to 1100 ppm(AEGL-3).Thus the proposed method would be easy,time saving and covers more details and would be handy for practicing engineers working in different chemical process industries.
文摘Cement industry is an intensive source of fuel consumption and greenhouse gases(GHGs) emissions. This industry is responsible for 5% of GHGs emissions and is among the top industrial sources of carbon dioxide(CO_(2)) emissions. Therefore, CO_(2) emissions reduction from cement production process has been always an appealing subject for researches in universities and industry. Various efforts have been carried out to mitigate the huge mass of CO_(2) emissions from the cement industry. Although, majority of these strategies are technically viable, due to various barriers, the level of CO_(2) mitigation in cement industry is still not satisfactory. Among numerous researches on this topic, only a few have tried to answer why CO_(2) abatement strategies are not globally practiced yet. This work aims to highlight the challenges and barriers against widespread and effective implementation of CO_(2) mitigation strategies in the cement industry and to propose practical solutions to overcome such barriers.