期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Photodegradation of Binary Azo Dyes Using Core-Shell Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>/TiO<sub>2</sub>Nanospheres
1
作者 eman alzahrani 《American Journal of Analytical Chemistry》 2017年第1期95-115,共21页
Photodegradation has emerged as an environmentally friendly method of decomposing harmful dyes in wastewater. In this study, core-shell Fe3O4/SiO2/ TiO2 nanospheres with magnetic cores were obtained from synthesised m... Photodegradation has emerged as an environmentally friendly method of decomposing harmful dyes in wastewater. In this study, core-shell Fe3O4/SiO2/ TiO2 nanospheres with magnetic cores were obtained from synthesised magnetic Fe3O4 nanoparticles through the precipitation method, the surface of the magnetic Fe3O4 nanoparticles was coated with a silica (SiO2) layer by hydrolysis of tetramethoxysilane (TMOS) as a silica source, and finally, Fe3O4/SiO2 nanospheres were coated with titanium (TiO2) layer using tetrabutyltitanate (TBT) as a precursor through the sol-gel process. The morphology and structure of the prepared materials were characterised by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), X-ray energy dispersive spectrometry (EDAX), Fourier transform infrared spectroscopy (FT-IR), and atomic force microscopy (AFM). The photocatalytic activities of the prepared core-shell nanospheres were studied using binary azo dyes, namely methyl orange (anionic dye, MO) and methylene blue (cationic dye, MB) in aqueous solution under UV light irradiation (365 nm), and UV-Vis spectrophotometer was utilised to monitor the amount of each dye in the mixture. It was found that 90.2% and 100% of binary MO and MB were removed for 5 h, respectively. The results revealed that the efficiency of the photocatalytic degradation of the core-shell nanospheres was not degreased after five runs that can be used as recyclable photocatalysts. The results show that the performance of the prepared core-shell nanospheres was better than that of commercial TiO2 nanoparticles. Moreover, the magnetic separation properties of the core-shell Fe3O4/SiO2/TiO2 nanospheres can enable the prepared materials to have wider application prospects. 展开更多
关键词 Fe3O4/SiO2/TiO2 NANOSPHERES CORE-SHELL Magnetic Photocatalyst Sol-Gel Method BINARY Azo Dyes PHOTODEGRADATION
下载PDF
Microwave-Hydrothermal Synthesis of Ferric Oxide Doped with Cobalt
2
作者 eman alzahrani Abeer Sharfalddin Mohamad Alamodi 《Advances in Nanoparticles》 2015年第2期53-60,共8页
Ferric oxides have drawn significant interest due to their unique properties, relatively low cost, and due to their potential applications in different fields. In this work, cobalt (Co) doped iron oxide (Fe2O3) powder... Ferric oxides have drawn significant interest due to their unique properties, relatively low cost, and due to their potential applications in different fields. In this work, cobalt (Co) doped iron oxide (Fe2O3) powders, with crystalline size 36.97 nm were successfully prepared using a microwave- hydrothermal process for the first time and characterised using different techniques. The morphology of the samples was characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-ray spectroscopy (EDAX), Fourier transform infrared (FT-IR) spectroscopy and ultraviolet-visible (UV-Vis) spectroscopy. The images show monodispersed particles with a sharp-edged square morphology. It was found that the average size was about 33.3 nm for Fe2O3 and 36.97 nm for Co-Fe2O3. The Co atomic percentage dopants were approximately 5.73%. The nanosized synthesised materials in this study may find an application in the areas of removal of toxic metal and dyes research. 展开更多
关键词 NANOSTRUCTURES Ferric OXIDE DOPING COBALT Characterisation
下载PDF
Eco-Friendly Production of Silver Nanoparticles from Peel of Tangerine for Degradation of Dye
3
作者 eman alzahrani 《World Journal of Nano Science and Engineering》 2015年第1期10-16,共7页
Green chemistry methods for production of nanoparticles have many advantages, such as ease of use, which makes the methods desirable and economically viable. The aim of the present work was to green synthesise silver ... Green chemistry methods for production of nanoparticles have many advantages, such as ease of use, which makes the methods desirable and economically viable. The aim of the present work was to green synthesise silver nanoparticles (SNPs) using aqueous tangerine peel extract in different ratios (2:1, 1:1, 1:2). The formed SNPs were characterised using ultraviolet-visible (UV-Vis) spectrophotometry, and transmission electron microscopy (TEM). The UV-Vis spectra showed that the highest absorbance was observed when the ratio of peel tangerine extract to silver nitrate solution was 1:2. The transmission electron micrographs showed the formation of poly dispersed nanoparticles. It was found that the average diameter of the nanoparticles was 30.29 ± 5.1 nm, 16.68 ± 5.7 nm, and 25.85 ± 8.4 nm, using a tangerine peel solution and silver nitrate solution ratio of 2:1, 1:1, and 1:2, respectively. The formed SNPs were evaluated as catalysts for methyl orange dye degradation, and the results confirmed that SNPs can speed up the degradation of the dye. 展开更多
关键词 Green Process Synthesis Silver Nanoparticle Tangerine PEEL Extract DEGRADATION of DYE Methyl ORANGE
下载PDF
Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance
4
作者 Fushan Li Qiuyu Li +13 位作者 Hideo Kimura Xiubo Xie Xiaoyu Zhang Nannan Wu Xueqin Sun Ben Bin Xu Hassan Algadi Rami Adel Pashameah Abdullah K.Alanazi eman alzahrani Handong Li Wei Du Zhanhu Guo Chuanxin Hou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第17期250-259,共10页
The microscopic morphology of electromagnetic wave absorbers influences the multiple reflections of electromagnetic waves and impedance matching,determining the absorption properties.Herein,the urchin-shaped bimetalli... The microscopic morphology of electromagnetic wave absorbers influences the multiple reflections of electromagnetic waves and impedance matching,determining the absorption properties.Herein,the urchin-shaped bimetallic nickel-cobalt oxide/carbon(NiCo_(2)O_(4)/C)composites are prepared via a hy-drothermal route,whose absorption properties are investigated by different morphologies regulated by changing calcination temperature.A minimum reflection loss(RL_(min))of-75.26 dB is achieved at a match-ing thickness of 1.5 mm,and the effective absorption bandwidth(EAB)of 8.96 GHz is achieved at 2 mm.Multi-advantages of the synthesized NiCo_(2)O_(4)/C composites contribute to satisfactory absorption proper-ties.First,the interweaving of the needle-like structures increases the opportunities for scattering and multiple reflections of incident electromagnetic waves,and builds up a conductive network to facilitate the enhancement of conductive losses.Second,the carbon component in the NiCo_(2)O_(4)/C composites en-hances the interfacial polarization and reduces the density of the absorber.Besides,generous oxygen va-cancy defects are introduced into the NiCo_(2)O_(4)/C composites,which induces defect polarization and dipole polarization.In summary,the ternary coordination of components,defects and morphology led to out-standing electromagnetic wave absorption,which lightened the path for improving the electromagnetic wave absorption property and enriching the family of NiCo_(2)O_(4) absorbers with excellent performance. 展开更多
关键词 NiCo_(2)O_(4)/C Oxygen vacancies Interfacial polarization Electromagnetic wave absorber
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部