The development of proton,oxygen-ion,and electron mixed conducting materials,known as triple-conduction materials,as cathodes for proton-conducting solid oxide fuel cells(H-SOFCs)is highly desired because they can inc...The development of proton,oxygen-ion,and electron mixed conducting materials,known as triple-conduction materials,as cathodes for proton-conducting solid oxide fuel cells(H-SOFCs)is highly desired because they can increase fuel cell performance by extending the reaction active area.Although oxygen-ion and electron conductions can be measured directly,proton conduction in these oxides is usually estimated indirectly.Because of the instability of cathode materials in a reducing environment,direct measurement of proton conduction in cathode oxide is difficult.The La0.8Sr0.2Sc0.5Fe0.5O3–δ(LSSF)cathode material is proposed for H-SOFCs in this study,which can survive in an H_(2)-containing atmosphere,allowing measurement of proton conduction in LSSF by hydrogen permeation technology.Furthermore,LSSF is discovered to be a unique proton and electron mixed-conductive material with limited oxygen diffusion capability that is specifically designed for H-SOFCs.The LSSF is an appealing cathode choice for H-SOFCs due to its outstanding CO_(2)tolerance and matched thermal expansion coefficient,producing a record-high performance of 2032 mW cm^(−2)at 700℃and good long-term stability under operational conditions.The current study reveals that a new type of proton–electron mixed conducting cathode can provide promising performance for H-SOFCs,opening the way for developing high-performance cathodes.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:52272216,51972183Hundred Youth Talents Program of HunanStartup Funding for Talents at University of South China。
文摘The development of proton,oxygen-ion,and electron mixed conducting materials,known as triple-conduction materials,as cathodes for proton-conducting solid oxide fuel cells(H-SOFCs)is highly desired because they can increase fuel cell performance by extending the reaction active area.Although oxygen-ion and electron conductions can be measured directly,proton conduction in these oxides is usually estimated indirectly.Because of the instability of cathode materials in a reducing environment,direct measurement of proton conduction in cathode oxide is difficult.The La0.8Sr0.2Sc0.5Fe0.5O3–δ(LSSF)cathode material is proposed for H-SOFCs in this study,which can survive in an H_(2)-containing atmosphere,allowing measurement of proton conduction in LSSF by hydrogen permeation technology.Furthermore,LSSF is discovered to be a unique proton and electron mixed-conductive material with limited oxygen diffusion capability that is specifically designed for H-SOFCs.The LSSF is an appealing cathode choice for H-SOFCs due to its outstanding CO_(2)tolerance and matched thermal expansion coefficient,producing a record-high performance of 2032 mW cm^(−2)at 700℃and good long-term stability under operational conditions.The current study reveals that a new type of proton–electron mixed conducting cathode can provide promising performance for H-SOFCs,opening the way for developing high-performance cathodes.