Translational animal models for oral mucositis(OM)are necessary to simulate and assess the bioclinical effects and response in humans.These models should simulate high levels of radiation exposure that leads to oxidat...Translational animal models for oral mucositis(OM)are necessary to simulate and assess the bioclinical effects and response in humans.These models should simulate high levels of radiation exposure that leads to oxidative stress and inflammatoryinitiated tissue changes.Hamster models have been extensively studied to observe pathological effects of radiation exposure and help in the development of effective treatments.To successfully evaluate the potential for treatment regimens with consistency and relevance,a radiation-induced OM hamster model was developed using a clinical linear accelerator utilized by cancer patients daily.The dose exposure to the isolated,everted cheek pouch of a hamster,as well as the progression of injury,proinflammatory marker,histological,and elasticity analyses of the buccal pouch were conducted to verify replicability and reproducibility of the injury model.The findings from this model demonstrated its ability to consistently induce injury and resolution over 28 days using an acute dose of 60 Gy.This model was developed to enhance clinical relevance when evaluating potential efficacious treatments and can now be utilized in efficacy studies to better evaluate developed therapeutics in a preclinical model that is easy to translate to clinical studies..展开更多
基金National Institute of Dental and Craniofacial Research,Grant/Award Number:R44DE023523。
文摘Translational animal models for oral mucositis(OM)are necessary to simulate and assess the bioclinical effects and response in humans.These models should simulate high levels of radiation exposure that leads to oxidative stress and inflammatoryinitiated tissue changes.Hamster models have been extensively studied to observe pathological effects of radiation exposure and help in the development of effective treatments.To successfully evaluate the potential for treatment regimens with consistency and relevance,a radiation-induced OM hamster model was developed using a clinical linear accelerator utilized by cancer patients daily.The dose exposure to the isolated,everted cheek pouch of a hamster,as well as the progression of injury,proinflammatory marker,histological,and elasticity analyses of the buccal pouch were conducted to verify replicability and reproducibility of the injury model.The findings from this model demonstrated its ability to consistently induce injury and resolution over 28 days using an acute dose of 60 Gy.This model was developed to enhance clinical relevance when evaluating potential efficacious treatments and can now be utilized in efficacy studies to better evaluate developed therapeutics in a preclinical model that is easy to translate to clinical studies..