The aim of this research is to determine the effect of bridging liquid surface tension and specific surface area on strength factor of coal agglomerates. The production of coal agglomerates of the range 15-27.51 mm wa...The aim of this research is to determine the effect of bridging liquid surface tension and specific surface area on strength factor of coal agglomerates. The production of coal agglomerates of the range 15-27.51 mm was achieved. The crushing strength of the agglomerates was determined for good handling of fine (coal-liquid mixture) to improve fugitive dust control, decrease in transportation losses, reduce risk of coal freezing, lower risk of spontaneous combustion, etc. in iron and steel industries, railway corporations and coal corporations. Kerosene (paraffin oil) was used as a binder and the agglomerated coal oil mixture was pelletized using balling technique (disc). Mechanical and physical tests like compressive strength test, etc. were carried out. The relationship between the bridging liquid surface tension and specific surface area on strength factor of coal agglomerates showed that there is considerable variation in these parameters in the coal powder systems.展开更多
文摘The aim of this research is to determine the effect of bridging liquid surface tension and specific surface area on strength factor of coal agglomerates. The production of coal agglomerates of the range 15-27.51 mm was achieved. The crushing strength of the agglomerates was determined for good handling of fine (coal-liquid mixture) to improve fugitive dust control, decrease in transportation losses, reduce risk of coal freezing, lower risk of spontaneous combustion, etc. in iron and steel industries, railway corporations and coal corporations. Kerosene (paraffin oil) was used as a binder and the agglomerated coal oil mixture was pelletized using balling technique (disc). Mechanical and physical tests like compressive strength test, etc. were carried out. The relationship between the bridging liquid surface tension and specific surface area on strength factor of coal agglomerates showed that there is considerable variation in these parameters in the coal powder systems.