In this paper, we obtain approximate analytical solutions of the Dirac equation for the shifted Hulthén potential within the framework of spin and pseudospin symmetry limits for arbitrary spin–orbit quantum numb...In this paper, we obtain approximate analytical solutions of the Dirac equation for the shifted Hulthén potential within the framework of spin and pseudospin symmetry limits for arbitrary spin–orbit quantum number κ using the supersymmetry quantum mechanics. The energy eigenvalues and the corresponding Dirac wave functions are obtained in closed forms.展开更多
The bound state solutions of the Schr?dinger equation with generalized inverted hyperbolic potential using the Nikiforov-Uvarov method are reported. We obtain the energy spectrum and the wave functions with this poten...The bound state solutions of the Schr?dinger equation with generalized inverted hyperbolic potential using the Nikiforov-Uvarov method are reported. We obtain the energy spectrum and the wave functions with this potential for arbitrary l-state. It is shown that the results of this potential reduced to the standard potentials—Rosen-Morse, Poschl-Teller and Scarf potential as special cases. We also discussed the energy equation and the wave function for these special cases.展开更多
文摘In this paper, we obtain approximate analytical solutions of the Dirac equation for the shifted Hulthén potential within the framework of spin and pseudospin symmetry limits for arbitrary spin–orbit quantum number κ using the supersymmetry quantum mechanics. The energy eigenvalues and the corresponding Dirac wave functions are obtained in closed forms.
文摘The bound state solutions of the Schr?dinger equation with generalized inverted hyperbolic potential using the Nikiforov-Uvarov method are reported. We obtain the energy spectrum and the wave functions with this potential for arbitrary l-state. It is shown that the results of this potential reduced to the standard potentials—Rosen-Morse, Poschl-Teller and Scarf potential as special cases. We also discussed the energy equation and the wave function for these special cases.