Layered double hydroxides(LDHs)are promising electrode candidates for supercapacitors.However,lim-itations like inferior cycling stability and unsatisfactory charge storage capability at low temperatures have exerted ...Layered double hydroxides(LDHs)are promising electrode candidates for supercapacitors.However,lim-itations like inferior cycling stability and unsatisfactory charge storage capability at low temperatures have exerted negative effects on their applications.Herein,a novel synthetic process has been elaborately designed and provided to have the composition and structure of the C/N-NiCoMn-LDH/Ag(C/N-CNMA)delicately regulated.Both the experimental and theoretical researches unveil that the incorporated manganese species and elemental silver could dramatically modulate the bandgap,crystallinity and surface electron structure of the LDH,leading to the remarkable improvement in its conductivity,exposed active sites and intrinsic electrochemical activity,and thus the OH^(*)and O^(*)adsorption free energy could be remarkably optimized,even at low temperatures.In addition,the low crystallinity C/N-CNMA is of great electrochemical compatibility with both the KOH aqueous electrolyte and the isobutyl alcohol(IPA)modulated organohydrogel electrolyte.By means of adjusting the solvation and hydrogen bonding in the electrolytes,the assembled hybrid supercapacitors deliver excellent energy density,power density and cycling stability in the temperature range of-30 to 25℃.Specifically,the gel electrolyte with IPA as the anti-freezing functional additive displays high flexibility and ionic conductivity at low temperatures.展开更多
The architecture strategy of the Unmanned Aerial Vehicle(UAV)pneumatic launch system should continue to evolve to adapt to complex and variable operating environments.Architecture representation,decomposition perspect...The architecture strategy of the Unmanned Aerial Vehicle(UAV)pneumatic launch system should continue to evolve to adapt to complex and variable operating environments.Architecture representation,decomposition perspective,and cluster analysis play a vital role in the early phase of system architecture development.In order for the system to emerge anticipated and desirable intrinsic functional properties,an architecture decomposition method based on the ObjectProcess Methodology(OPM)and Design Structure Matrix(DSM)is put forward in this paper.The OPM is proposed to model the UAV launch process formally,and the matrix representation of the architecture of the pneumatic launch system is established.After the extension of the definition and operations of DSM,with the Idicula-Gutierrez-Thebeau Algorithm plus(IGTA+)clustering algorithm,the transformation of the pneumatic launch system architecture from process decomposition to function decomposition is demonstrated in this paper.The analysis shows that the architecture decomposition of the pneumatic launch system meets the functional requirements of stakeholders.展开更多
基金supported by the National Natural Science Foundation of China (Nos.51972049 and 51672040)the Jilin Province Development and Reform Commission (No.2021C040-4).
文摘Layered double hydroxides(LDHs)are promising electrode candidates for supercapacitors.However,lim-itations like inferior cycling stability and unsatisfactory charge storage capability at low temperatures have exerted negative effects on their applications.Herein,a novel synthetic process has been elaborately designed and provided to have the composition and structure of the C/N-NiCoMn-LDH/Ag(C/N-CNMA)delicately regulated.Both the experimental and theoretical researches unveil that the incorporated manganese species and elemental silver could dramatically modulate the bandgap,crystallinity and surface electron structure of the LDH,leading to the remarkable improvement in its conductivity,exposed active sites and intrinsic electrochemical activity,and thus the OH^(*)and O^(*)adsorption free energy could be remarkably optimized,even at low temperatures.In addition,the low crystallinity C/N-CNMA is of great electrochemical compatibility with both the KOH aqueous electrolyte and the isobutyl alcohol(IPA)modulated organohydrogel electrolyte.By means of adjusting the solvation and hydrogen bonding in the electrolytes,the assembled hybrid supercapacitors deliver excellent energy density,power density and cycling stability in the temperature range of-30 to 25℃.Specifically,the gel electrolyte with IPA as the anti-freezing functional additive displays high flexibility and ionic conductivity at low temperatures.
基金was co-supported by the National Defense Outstanding Youth Science Foundation,China(No.2018-JCJQZQ-053)the Natural Science Foundation of Jiangsu Province,China(No.BK20220911).
文摘The architecture strategy of the Unmanned Aerial Vehicle(UAV)pneumatic launch system should continue to evolve to adapt to complex and variable operating environments.Architecture representation,decomposition perspective,and cluster analysis play a vital role in the early phase of system architecture development.In order for the system to emerge anticipated and desirable intrinsic functional properties,an architecture decomposition method based on the ObjectProcess Methodology(OPM)and Design Structure Matrix(DSM)is put forward in this paper.The OPM is proposed to model the UAV launch process formally,and the matrix representation of the architecture of the pneumatic launch system is established.After the extension of the definition and operations of DSM,with the Idicula-Gutierrez-Thebeau Algorithm plus(IGTA+)clustering algorithm,the transformation of the pneumatic launch system architecture from process decomposition to function decomposition is demonstrated in this paper.The analysis shows that the architecture decomposition of the pneumatic launch system meets the functional requirements of stakeholders.