期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamic recrystallization and silicide precipitation behavior of titanium matrix composites under different strains 被引量:6
1
作者 er-tuan zhao Shi-chen SUN +3 位作者 Jin-rui YU Yu-kun AN Wen-zhen CHEN Rui-run CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3416-3427,共12页
In order to elucidate the microstructure evolution and silicide precipitation behavior during high-temperature deformation,TiB reinforced titanium matrix composites were subjected to isothermal hot compression at 950... In order to elucidate the microstructure evolution and silicide precipitation behavior during high-temperature deformation,TiB reinforced titanium matrix composites were subjected to isothermal hot compression at 950℃,strain rate of 0.05 s^(−1) and employing different strains of 0.04,0.40,0.70 and 1.00.The results show that with the increase of strain,a decrease in the content,dynamic recrystallization of theαphase and the vertical distribution of TiB along the compression axis lead to stress stability.Meantime,continuous dynamic recrystallization reduces the orientation difference of the primaryαphase,which weakens the texture strength of the matrix.The recrystallization mechanisms are strain-induced grain boundary migration and particle stimulated nucleation by TiB.The silicide of Ti_(6)Si_(3) is mainly distributed at the interface of TiB andαphase.The precipitation of silicide is affected by element diffusion,and TiB whisker accelerates the precipitation behavior of silicide by hindering the movement of dislocations and providing nucleation particles. 展开更多
关键词 titanium matrix composites dynamic recrystallization silicide precipitation hot compression
下载PDF
Characteristics of interfacial reactions between Ti-6Al-4V alloy and ZrO2 ceramic mold
2
作者 Shi-chen Sun er-tuan zhao +3 位作者 Chen Hu Jin-rui Yu Yu-kun An Ren-guo Guan 《China Foundry》 SCIE CAS 2020年第6期409-415,共7页
The interfacial reaction between Ti-6Al-4V alloy and ZrO2 ceramic mold with zirconia sol binder was investigated by keeping the 12 g alloy melt in a vacuum induction furnace for 15 s.The microstructures,element distri... The interfacial reaction between Ti-6Al-4V alloy and ZrO2 ceramic mold with zirconia sol binder was investigated by keeping the 12 g alloy melt in a vacuum induction furnace for 15 s.The microstructures,element distribution and phase constitution of the interface were identified by optical microscopy(OM),scanning electron microscopy(SEM)equipped with energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The results show that the whole interface reaction layer can be divided into three regions:metal penetration layer,transition layer,and hardened layer according to the structure morphology,which has the characteristics of severe metal penetration,finer lamellar,and coarse oxygen-richαphase,respectively.The erosion of the alloy melt on the ceramic mold promotes the decomposition of zirconia,which leads to the increase of local Zr concentration,greatly increasing the activity coefficient of Ti,aggravating the occurrence of interfacial reaction.Thus,the interfacial reaction shows the characteristics of chain reaction.When the oxygen released by the dissolution of zirconia exceeds the local solid solubility,it precipitates in the form of bubbles,resulting in blowholes at the interface.The result also indicates that the zirconia mold with zirconia sol binder is not suitable for pouring heavy titanium alloy castings. 展开更多
关键词 titanium alloy interfacial reaction ZrO2 ceramic mold activity coefficient
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部