Gold nanoparticles were synthesized through the reduction of tetrachlorauric acid (HAuCl4) by NaBH4, with polyethyleneimine(PEI) as stabilizer. The nanoparticles were characterized by UV-vis spectroscopy and atomic f...Gold nanoparticles were synthesized through the reduction of tetrachlorauric acid (HAuCl4) by NaBH4, with polyethyleneimine(PEI) as stabilizer. The nanoparticles were characterized by UV-vis spectroscopy and atomic force microscopy(AFM).展开更多
Enhanced cellular uptake efficiency of nanoparticles is important for their biomedical applications, including photothermal therapy (PTT) for cancer. In this study, a one-pot method was used to construct a positivel...Enhanced cellular uptake efficiency of nanoparticles is important for their biomedical applications, including photothermal therapy (PTT) for cancer. In this study, a one-pot method was used to construct a positively charged and magnet-responsive nanocomposite comprising reduced graphene oxide anchoring iron oxide (RGI) with a polyethylenimine (PEI) modification, to improve the efficiency of cell internalization. The surface charge can be finely tuned using PEIs of different molecular weights. The obtained RGIlsk composite (RGI modified by 1.8 kDa PEI) could load indocyanine green (ICG) at a high mass ratio of 10:3 and ablate cancer cells using low-density laser irradiation because of its positively charged surface. In addition, the hybrids of RGI1.8k and ICG could kill most cancer cells at a laser density of 0.7 W/cm2 in vitro and 0.3 W/cm2 in vivo. At the same time, cell viability could be controlled by converting the external magnetic-field direction because of the enrichment of the magnet-responsive composite in vitro and in vivo. Furthermore, RGIr8k-ICGs could be used as T2-weighted magnetic resonance and infrared thermal imaging agents. Coupled with the magnetic target effect, the imaging signal could be improved significantly. Therefore, RGII^sk-ICGs represent a new highly efficient PTT and imaging agent with great potential for cancer treatment.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.29975028).
文摘Gold nanoparticles were synthesized through the reduction of tetrachlorauric acid (HAuCl4) by NaBH4, with polyethyleneimine(PEI) as stabilizer. The nanoparticles were characterized by UV-vis spectroscopy and atomic force microscopy(AFM).
基金The work was supported by the National Natural Science Foundation of China (Nos. 31301177, 21427811, and 91430217), and MOST China (No. 2013YQ170585). J. W. also appreciated NSF.
文摘Enhanced cellular uptake efficiency of nanoparticles is important for their biomedical applications, including photothermal therapy (PTT) for cancer. In this study, a one-pot method was used to construct a positively charged and magnet-responsive nanocomposite comprising reduced graphene oxide anchoring iron oxide (RGI) with a polyethylenimine (PEI) modification, to improve the efficiency of cell internalization. The surface charge can be finely tuned using PEIs of different molecular weights. The obtained RGIlsk composite (RGI modified by 1.8 kDa PEI) could load indocyanine green (ICG) at a high mass ratio of 10:3 and ablate cancer cells using low-density laser irradiation because of its positively charged surface. In addition, the hybrids of RGI1.8k and ICG could kill most cancer cells at a laser density of 0.7 W/cm2 in vitro and 0.3 W/cm2 in vivo. At the same time, cell viability could be controlled by converting the external magnetic-field direction because of the enrichment of the magnet-responsive composite in vitro and in vivo. Furthermore, RGIr8k-ICGs could be used as T2-weighted magnetic resonance and infrared thermal imaging agents. Coupled with the magnetic target effect, the imaging signal could be improved significantly. Therefore, RGII^sk-ICGs represent a new highly efficient PTT and imaging agent with great potential for cancer treatment.