期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Artificial Nucleic Acid Tractor-Directed Simultaneous Depletion of Oncogenic Membrane Proteins Without Hijacking Proteolysis-Specific Actuator
1
作者 Zhen Zou Songlan Pan +8 位作者 Qian Xue Ting Chen Ziyun Huang Bei Qing Pengfei Liu Conghui Zhao Yunlin Sun erhu xiong Ronghua Yang 《CCS Chemistry》 CSCD 2024年第2期439-449,共11页
Targeted protein degradation(TPD)is an emerging tool for degrading proteins of interest,which affords an attractive modality for cancer therapy.However,the present TPD technologies must engage a proteolysis-specific a... Targeted protein degradation(TPD)is an emerging tool for degrading proteins of interest,which affords an attractive modality for cancer therapy.However,the present TPD technologies must engage a proteolysis-specific actuator to initiate degradation of targeted proteins in the proteasome or lysosome.Herein,we report an artificial tractor that can induce endocytosis-mediated protein depletion without hijacking a proteolysis-specific actuator.In this design,bispecific aptamer chimeras(BSACs)are established,which can bridge human epidermal growth factor receptor 2(ErbB-2),an important biomarker in a common important biomarker in cancer,with membrane proteins of interest.Taking advantage of the property of aptamer-induced endocytosis and digestion of ErbB-2,another membrane protein is translocated into the lysosome in a hitchhike-like manner,resulting in lysosomal proteolysis along with ErbB-2.This strategy frees the TPD from the fundamental limitation of proteolysis-specific actuator and allows simultaneous regulation of the quantity and function of two oncogenic receptors in a cell-type-specific manner,expanding the application scope of TPD-based therapeutics. 展开更多
关键词 targeted protein degradation APTAMER epidermal growth factor receptor 2 LYSOSOME membrane proteins cancer therapy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部