Micro(nano)plastics(MNPs)have become a significant environmental concern due to their widespread presence in the biosphere and potential harm to ecosystems and human health.Here,we propose for the first time a MNPs ca...Micro(nano)plastics(MNPs)have become a significant environmental concern due to their widespread presence in the biosphere and potential harm to ecosystems and human health.Here,we propose for the first time a MNPs capture,utilization,and storage(PCUS)concept to achieve MNPs remediation from water while meeting economically productive upcycling and environmentally sustainable plastic waste management.A highly efficient capturing material derived from surface-modified woody biomass waste(M-Basswood)is developed to remove a broad spectrum of multidimensional and compositional MNPs from water.The M-Basswood delivered a high and stable capture efficiency of>99.1%at different pH or salinity levels.This exceptional capture performance is driven by multiscale interactions between M-Basswood and MNPs,involving physical trapping,strong electrostatic attractions,and triggered MNPs cluster-like aggregation sedimentation.Additionally,the in vivo biodistribution of MNPs shows low ingestion and accumulation of MNPs in the mice organs.After MNPs remediation from water,the M-Basswood,together with captured MNPs,is further processed into a high-performance composite board product where MNPs serve as the glue for utilization and storage.Furthermore,the life cycle assessment(LCA)and techno-economic analysis(TEA)results demonstrate the environmental friendliness and economic viability of our proposed full-chain PCUS strategy,promising to drive positive change in plastic pollution and foster a circular economy.展开更多
基金the National Natural Science Foundation of China(grant no.52273091)Knowledge Innovation Program of Wuhan-Basi Research(grant no.2023020201010072)+1 种基金the Fundamental Research Funds for the Central Universities(grant no.691000003)for the financial supportE.L.thanks the University of the Basque Country(Convocatoria de ayudas a grupos de investigación,GIU21/010)for the financial support。
文摘Micro(nano)plastics(MNPs)have become a significant environmental concern due to their widespread presence in the biosphere and potential harm to ecosystems and human health.Here,we propose for the first time a MNPs capture,utilization,and storage(PCUS)concept to achieve MNPs remediation from water while meeting economically productive upcycling and environmentally sustainable plastic waste management.A highly efficient capturing material derived from surface-modified woody biomass waste(M-Basswood)is developed to remove a broad spectrum of multidimensional and compositional MNPs from water.The M-Basswood delivered a high and stable capture efficiency of>99.1%at different pH or salinity levels.This exceptional capture performance is driven by multiscale interactions between M-Basswood and MNPs,involving physical trapping,strong electrostatic attractions,and triggered MNPs cluster-like aggregation sedimentation.Additionally,the in vivo biodistribution of MNPs shows low ingestion and accumulation of MNPs in the mice organs.After MNPs remediation from water,the M-Basswood,together with captured MNPs,is further processed into a high-performance composite board product where MNPs serve as the glue for utilization and storage.Furthermore,the life cycle assessment(LCA)and techno-economic analysis(TEA)results demonstrate the environmental friendliness and economic viability of our proposed full-chain PCUS strategy,promising to drive positive change in plastic pollution and foster a circular economy.